现实中的Agent系统会面临很多的挑战,常见的有以下几点:
- 感知模块的探索不足:当前研究中对LLM-based Agent的感知模块探索不够,尤其是在处理代码这类特殊文本输入时,缺乏对树/图结构等高级输入模式的研究。
- 角色扮演能力的需求:Agent常常需要在不同任务中扮演多种角色,如代码生成器、测试员等,这对Agent的多角色处理能力提出了挑战。
- 知识检索基础的缺乏:很多场景,缺乏一个权威且公认的、包含丰富相关知识的外部检索库
- 幻觉问题:如生成不存在的API或错误的代码,这影响了Agent的整体性能。
- 效率问题:在多Agent协作中,计算资源的需求和通信开销可能会影响协作的效率和实时性。
一个Agent应用框架主要由三个主要的部分:感知、记忆和行动。
- 感知部分就像是机器人的眼睛和耳朵。它用来接收来自外部世界的各种信息,比如文字、图片或者声音,然后把这些信息转换成机器人能理解的形式。
- 行动部分就像是机器人的手脚和大脑。它根据接收到的信息做出决策,就像是我们根据看到和听到的东西来决定怎么做一样。同时,机器人还可以根据和外部世界互动得到的反馈来调整和改进自己的决策。
- 记忆部分则像是机器人的记忆库,它保存了各种各样的知识和经验。这些记忆帮助机器人更好地理解信息和做出决策。记忆部分还可以通过学习来更新,让机器人在未来能做得更好。
- 最后,多Agent协作。像是一群机器人一起工作,每个机器人都有自己的任务,但它们通过合作来完成更复杂的工作。
感知可以处理多种模态的输入,包括文本、视觉(如图像)和听觉(如声音)输入。
其中文本输入可以进一步细分为基于token的输入、基于tree/graph的输入和混合输入。这些不同的输入形式分别关注代码的不同特征,例如语义、结构等。
当然无论是文本、视觉还是听觉输入,感知模块最终都要将接收到的信息转换成适合LLM处理的嵌入格式,为后续的推理和决策制定奠定基础。
记忆模块负责存储能够帮助LLM进行有效推理决策的信息。它包括语义记忆、情景记忆和程序记忆三种类型。
- 语义记忆通常存在于外部知识库中,如文档、库、API信息等;
- 情景记忆记录了与当前任务相关的特定情景或经验信息。例如,它可以包括历史消息、代码库中检索到的相关代码;
- 程序记忆包含了存储在LLM权重中的隐性知识和在Agent代码中明确写出的显性知识。
记忆模块是Agent的大脑,它保存了所有重要的信息和经验,帮助Agent更好地理解问题和做出决策。
重头戏,Action。行动模块包括内部行动和外部行动,它们根据LLM的输入做出推理决策,并根据与外部环境互动获得的反馈来优化这些决策。
内部行动,涉及Agent的思考过程,包括推理、检索和学习。
其中推理部分,可以概括为3种形式
- 基于思维链推理(Chain-of-Thought, CoT):通过逐步展开思考过程,帮助LLM深入理解问题,分解复杂任务,并生成高质量的答案。
- 结构化推理(Structured CoT):将推理过程以类似伪代码的形式呈现,涉及循环、分支等结构。这种方式特别适合于代码生成,因为它可以利用源代码的丰富结构信息。
- 其他推理形式:包括头脑风暴和树形推理等,这些方法通过生成相关关键词或动态探索和更新推理过程来辅助问题解决。
其中检索部分,为了辅助推理和决策过程,从内部或外部的知识库中检索相关信息。这包括查找文档、代码片段、API信息等,以支持当前的任务。根据召回内容不同,可以概括为以下几个类别:
召回分为密集Dense的语义搜索,稀疏Sparse的关键词搜索:
learning Action部分,是LLM-based Agent持续进步和适应新挑战的关键。通过有效的学习机制,系统能够不断进化。一般包括从经验中学习、优化内部模型和调整策略,以更好地完成未来的任务。
- 更新语义记忆:这可能包括新的API知识、编程语言的语法变化或新的算法。
- 更新程序记忆:通常涉及到模型的微调或持续学习。
- 优化Agent代码:可能会根据学习到的知识来优化其执行代码,以提高效率和性能。
最后是External Action部分,它使得Agent能够主动地与外部世界进行交互,完成任务,并根据外部反馈进行自我优化。如:通过与人或其他Agent交互,以获取任务需求、澄清问题或报告结果;与各种数字工具和平台(如API服务)进行交互,以执行任务或验证结果。
最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】