摘要
本文介绍了标准RAG和GraphRAG两种信息检索增强生成技术在金融服务领域的应用,比较了它们的区别和优势,并详细阐述了如何结合两者构建端到端协同式应用来提升洞察力,例如改进灾后理赔管理。
关键要点:
* GraphRAG通过结合知识图谱,改进传统的标准RAG系统,能够处理更复杂的多跳问题,生成更全面、相关的答案。
* 标准RAG依赖向量存储检索相关文档,而GraphRAG利用知识图谱,提取实体、关系和概念来生成答案。
* GraphRAG尤其适用于需要深入理解复杂关系的场景,例如欺诈检测和知识管理。
* 在金融服务领域,结合标准RAG和GraphRAG可以显著增强洞察力,例如在银行领域提升客户关系管理和风险评估,在保险领域改进理赔流程。
* 文章提供了一个结合标准RAG和GraphRAG构建端到端协同式应用的步骤指南,以灾后理赔管理为例进行说明。
* 标准RAG擅长提供简洁的基于文档的摘要,而GraphRAG提供更详细、相互关联的洞察。
* 结合标准RAG和GraphRAG可以实现更高效的决策和战略规划。
一、GraphRAG
GraphRAG(图形检索增强生成)是一种先进的自然语言处理方法,它通过整合大型语言模型 (LLM) 生成的来增强传统的检索增强生成(标准 RAG)系统。然后,这些节点被聚类到 中,从而为复杂的多跃点问题生成更全面、更多样化的答案。通过利用这些结构化知识图谱,GraphRAG 显著提高了生成响应的质量和相关性。
二、标准 RAG 和 GraphRAG 的区别
标准 RAG 和 GraphRAG 的主要区别在于它们的信息检索来源和方法。
标准 RAG 依赖于根据用户的查询检索相关文档。它对排名靠前的文档进行排名和选择,将它们与查询相结合,并使用语言模型生成最终响应。相比之下,GraphRAG 利用的包括 .它从知识图谱中提取候选实体、关系和概念,对这些候选对象进行排名和筛选,然后将它们与查询相结合以生成响应。
这种方法使 GraphRAG 能够利用更多结构化和互连的数据,与标准 RAG 以文档为中心的方法相比,提供更丰富、更符合上下文的响应。
标准 RAG 和图形 RAG 的区别
三、标准 RAG 和 GraphRAG 示例
这是一个简单的示例,用于演示 Standard 和 GraphRAG 之间的区别。假设您想知道保险业的最新风险。您看到了一篇题为“驾驭保险行业不断变化的风险”的麦肯锡文章,并决定分析它带来的当前挑战(驾驭保险行业不断变化的风险 |麦肯锡)。您对 Standard RAG 和 GraphRAG 如何帮助您从本文中提取信息感兴趣,尤其是在回答“保险业的共同主题是什么”之类的问题时。以下是使用 Standard RAG 和 GraphRAG 的发现。
标准RAG侧重于检索和总结相关文档,从而产生更直接、更简洁的响应。
相比之下,GraphRAG通过利用知识图谱中实体之间的关系提供更详细且互连的响应。这使它能够提供更丰富的背景,突出复杂的主题,例如相互关联的风险因素和 AI 在保险业中的整合。
标准 RAG 输出
GraphRAG 输出
四、如何确定 GraphRAG 用例
要确定GraphRAG(检索增强生成)的用例,首先识别复杂关系和上下文理解至关重要的领域。GraphRAG在数据点相互关联的场景中表现出色,例如知识管理、推荐系统和欺诈检测。首先绘制出您领域内的实体及其关系。例如,在保险领域,实体可以包括投保人、代理、保单和索赔,关系则代表保单和索赔交易。
接下来,评估使用图结构相较于传统方法的潜在好处。GraphRAG可以通过利用这些关系增强数据检索,提供更准确和情境相关的信息。这种方法在需要深入洞察和细致理解的领域尤其有用,例如索赔欺诈检测,在这些领域中,客户档案和索赔交易是相互关联的。通过构建知识图谱,您可以实现更复杂的查询,并生成更丰富、更具信息量的响应。
五、 可从标准 RAG 和 GraphRAG 的组合功能中受益的使用案例
在金融服务行业,标准RAG和GraphRAG的整合可以显著增强洞察的深度和准确性。例如,在银行业,标准RAG和Graph RAG的结合可以在增强客户关系管理(CRM)和风险评估方面发挥重要作用。标准RAG可以获取大量的客户数据、交易历史和市场趋势,从而提供客户财务行为的全面视角。同时,Graph RAG可以分析客户、账户和交易之间复杂的关系网络,识别潜在风险和机会。例如,它可以检测出可能表明欺诈活动的异常交易模式,或通过理解客户之间的相互需求来突出交叉销售的机会。这种整体方法使银行能够提供更个性化的服务,改善风险管理,并最终推动更好的商业成果。
在保险行业,通过利用这些综合能力,可以彻底改革索赔处理。标准的RAG能够高效检索相关的保单文件、历史索赔数据和监管指南,而图形RAG能够绘制出涉及索赔的各个实体之间的关系,如保单持有人、医疗服务提供者和修理店。这种双重方法不仅加速了索赔裁决过程,还通过揭示传统方法可能遗漏的隐藏联系和模式,帮助识别欺诈性索赔。
六、使用组合RAG方法开发端到端copilot 应用程序
以下是有关如何使用组合 RAG 构建端到端 Copilot 类型应用程序的分步指南,其中包括标准 RAG 和 Graph RAG。
使用 Standard 和 Graph RAG 进行端到端应用程序开发
1. 定义用例和数据
-
使用案例:灾后索赔管理。
-
数据 :历史索赔、客户资料、保单详细信息、灾害影响数据、地理数据、社交网络、天气模式。
2. 创建并填充知识图谱
-
数据收集 :从内部和外部来源收集数据。
-
数据建模:定义实体和关系的架构。
-
数据摄取:将数据加载到知识图谱中。
3. 索引和嵌入数据
-
文档索引:为相关文档编制索引。
-
嵌入创建:为实体和关系生成嵌入。
4. 设置检索系统
-
文档检索:实现从矢量存储中检索文档的系统。
-
图形检索:实施图形查询以提取相关实体和关系。
5. 开发排名和过滤算法
-
文献排名:对文献进行排名并选择排名靠前的文献。
-
图排序:对图形数据进行排名和筛选。
6. 与语言模型集成
-
合并数据:合并从两个来源检索到的信息。
-
响应生成:使用语言模型生成最终响应。
7. 开发用户界面
-
前端:创建用户友好的界面。
-
后端:确保组件之间的无缝通信。
8. 测试和验证
-
测试场景:验证准确性和相关性。
-
用户反馈:根据反馈优化系统。
9. 部署和监控
-
部署 :在生产环境中部署。
-
监控 :持续监控和改进。
七、示例工作流
-
用户查询:“在最近的飓风之后管理索赔。
-
文档检索:检索历史索赔、保单详细信息和灾难影响报告。
-
图检索:提取地理数据、社交网络和实时天气数据。
-
排名和筛选:确定相关信息的优先级。
-
响应生成:合并数据并生成全面的索赔管理计划。
-
输出 :提供包含以下内容的详细报表:
-
历史索赔和保单详情。
-
地理影响分析。
-
社交网络洞察,用于识别受影响的社区。
-
用于持续风险评估的实时天气数据。
-
资源分配和加快索赔处理的建议。
通过执行这些步骤,您可以有效地实施组合 RAG 方法来加强灾后索赔管理,提供更准确且上下文更丰富的响应。
八、结论
总之,标准 RAG 和 GraphRAG 都提供了独特的优势,可以显着增强信息检索和生成任务。标准 RAG 擅长提供简洁、基于文档的摘要,非常适合简单的查询。另一方面,GraphRAG 利用知识图谱的强大功能提供更详细和相互关联的见解,这在金融服务领域的销售优化和欺诈检测等复杂场景中尤为有价值。
通过了解每种方法的不同功能,组织可以更好地确定何时使用 GraphRAG 来获得丰富的上下文理解,以及何时依赖标准 RAG 进行快速、相关的总结。将这些方法结合到端到端的 Copilot 应用程序中,可以将效率和洞察力提升到新的水平,从而实现更明智的决策和战略规划。正如示例和用例所展示的那样,标准 RAG 和 GraphRAG 之间的协同作用可以推动创新并改善整个行业的成果。
最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】