大模型论文 | 提示词工程方法(三)Least-to-Most Prompting模式

技术路线3 Least-to-Most Prompting模式

Paper: Least-to-Most Prompting Enables Complex Reasoning in Large Language Models

  1. 背景: 传统的链式思维提示(chain-of-thought prompting)在解决难度超过示例的复杂问题时表现不佳。为了克服这一挑战,论文提出了最少到最多提示策略,该策略通过将复杂问题分解为一系列更简单的子问题来解决。

  2. Least-to-Most Prompting策略: 该策略分为两个阶段:问题分解和子问题解决。在问题分解阶段,使用常量示例展示如何分解问题;在子问题解决阶段,提示包含三个部分:已解决子问题的示例、已回答的子问题及其生成的解决方案列表,以及下一个待解答的问题。

  3. 示例: Elsa有5个苹果,Anna比Elsa多2个苹果。他们一起有多少个苹果?

  • Least-to-Most Prompting提示解决过程:
  • 确定Anna有多少个苹果。
  • 确定Elsa和Anna一起有多少个苹果。
  • 输出:他们一起有12个苹果。

img

L2M与CoT的对比

Least-to-Most Prompting(L2M)和Chain-of-Thought Prompting(CoT)是两种不同的语言模型提示策略,它们都旨在通过提供示例来引导模型完成特定任务。以下是这两种模式的比较,包括它们的异同点:

相似之处:

  1. 基于少样本学习的提示:L2M和CoT都使用少样本学习的提示(few-shot prompts)来指导语言模型进行推理或回答问题。这些示例作为输入的一部分,帮助模型理解任务的要求。

  2. 灵活性:L2M和CoT都提供了一种灵活的方式来利用预训练语言模型解决各种问题,无需对模型进行特定任务的训练或微调。

不同之处:

  1. 示例的复杂性:
  • L2M:Least-to-Most Prompting从最简单的示例开始,逐步增加示例的复杂性。这种方法假设简单的示例可以帮助模型建立基础理解,然后通过更复杂的示例逐步引导模型进行更复杂的推理。
  • CoT:Chain-of-Thought Prompting专注于提供一系列中间推理步骤,这些步骤模拟人类解决问题时的思考过程。每个示例都展示了如何分解问题并逐步得出答案。
  1. 推理过程的透明度:
  • L2M:随着示例复杂性的增加,模型的推理过程可能变得更加不明显,因为示例的变化可能不总是清晰地指示出推理步骤。
  • CoT:通过明确展示中间推理步骤,CoT提供了对模型推理过程的透明度,使最终答案的生成过程更加清晰。
  1. 任务适用性:
  • L2M:可能更适合于模型已经具有一定理解能力的任务,通过逐步增加难度来挑战和提升模型的能力。
  • CoT:特别适用于需要多步骤逻辑推理的任务,如数学问题解答、逻辑谜题等,因为它通过示例直接展示了推理的具体步骤。
  1. 结果的一致性:
  • L2M:由于示例的复杂性逐渐增加,模型的输出可能会随着示例的变化而变化,这可能导致结果的一致性不如CoT。
  • CoT:通过生成多个推理路径并选择最一致的答案,CoT方法旨在提高答案的一致性和准确性。

如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

在这里插入图片描述

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值