【三维目标检测】Pointpillars(二)

本文详细解析了Pointpillars算法,一种将三维点云转换为2D伪图像进行目标检测的方法。内容包括体素化、体素特征提取、中间特征提取、主干网络特征提取、检测头的构建以及损失函数等关键步骤,适用于快速3D目标检测,尤其在无人驾驶领域中有广泛应用。
摘要由CSDN通过智能技术生成

本文为博主原创文章,未经博主允许不得转载。
本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。

        数据和源码请参考上一篇博文:【三维目标检测】Pointpillars(一)_Coding的叶子的博客-CSDN博客

        PointPillars是一种基于体素的三维目标检测算法,发表在CVPR2019《PointPillars: Fast Encoders for Object Detection from Point Clouds》。它的主要思想是把三维点云转换成2D伪图像以便用2D目标检测的方式进行目标检测。PointPillars在配置为Intel i7 CPU和1080ti GPU上的预测速度为62Hz,在无人驾驶领域中常常能够使用上它,是一个落地且应用广泛的一个3D快速目标检测网络。

1 Pointpillars模型总体

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coding的叶子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值