【三维目标检测】SASSD(一)

本文介绍了SASSD,一种用于点云三维目标检测的模型,它在CVPR 2020上发表。SASSD利用语义分割网络辅助候选框特征提取,提升检测精度,且该辅助网络只在训练时使用,不增加推理开销。文章涵盖了SASSD的源码、数据处理、模型训练、调试方法以及与现有方法的区别。
摘要由CSDN通过智能技术生成

本文为博主原创文章,未经博主允许不得转载。
本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。

        SASSD是用于点云三维目标检测模型算法,发表在CVPR 2020《Structure Aware Single-stage 3D Object Detection from Point Cloud》,论文地址为“https://www4.comp.polyu.edu.hk/~cslzhang/paper/SA-SSD.pdf”。SASSD与基于Anchor的目标检测模型的结构基本保持一致,其核心特点在于采用了一个语义分割网络来辅助候选框特征提取,使产生的候选框质量更高。辅助网络这一点与PointRCNN和VoteNet的部分思想很接近。不同之处在于,SASSD提取体素中心点特征时融合了不同尺度下近邻体素的特征,从而使得网络可以有效获取到局部结构特征(Structure Aware)。另一方面,这个辅助网络仅在训练时用到,在推理时则完全拆解下来,从而使得模型在实际部署过程种不增加额外开销。因此,SASSD辅助网络的作用在于提高模型训练精度。

1 源码与输入数据

        源码采用的是mmdetection3d框架中的SASSD模型。mmdetection3d安装和调试验证可参考本博客之前的专栏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coding的叶子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值