1. KAG简介
浙江大学与蚂蚁集团推出的**知识增强生成(KAG)框架,旨在解决传统检索增强生成(RAG)**方法在多跳推理和复杂逻辑处理中的不足。KAG通过结合知识图谱(KGs)和创新技术,显著提升了大语言模型在专业领域问答中的准确性和效率。
KAG框架的五大创新亮点:
- LLM友好的知识表示:通过层次化的知识组织,使大语言模型更适应专业领域的知识处理。
- 知识图谱与文本块互索引:提高了数据检索的精确度和效率,增强了知识的整合能力。
- 逻辑形式引导推理:结合语言推理与符号推理,支持复杂的多轮推理和问题求解。
- 知识对齐与语义推理:通过语义推理对齐不同层次的知识,提升了推理的准确性。
- 模型能力增强:优化大语言模型的推理能力,提升了专业领域问答系统的整体表现。
在蚂蚁集团,KAG成功应用于电子政务和电子健康项目。在电子政务中,KAG开发了一个高效的政府服务问答系统;在电子健康中,KAG提升了医疗问答系统的准确度,尤其在医学指标解读和推荐方面,展现了强大的推理能力。