AlphaFold教程与最新蛋白质结构预测进展,附视频与Slides

f418daeecb148bc358b722f880fe9c06.png

来源:专知
本文约1000字,建议阅读5分钟机器学习模型有潜力成为生物学的核心工具,正如最近在蛋白质结构预测方面的进展所表明的那样。

AlphaFold是DeepMind开发的一个人工智能系统,可以根据蛋白质的氨基酸序列预测蛋白质的3D结构。AlphaFold软件和“AlphaFold蛋白质结构数据库”(AlphaFold Protein Structure Database)向公众开放已经一年了,用户可以探索和研究他们感兴趣的蛋白质。

机器学习模型有潜力成为生物学的核心工具,正如最近在蛋白质结构预测方面的进展所表明的那样。在这次网络研讨会中,我将概述AlphaFold:该系统如何工作,如何获得蛋白质结构预测,以及如何分析它们。然后,我将回顾构建系统的一些方法,并将讨论如何为新应用程序评估AlphaFold。

近年来,蛋白质结构的计算模型的能力和准确性显著提高,结构生物学的一些领域没有受到影响。这些变化已经在当前版本的AlphaFold中实现,RoseTTAFold也不远了。实验结构生物学仍然需要解决预测结构中的歧异,并验证细节,但高质量模型的可用性正在消除实验中的许多瓶颈。即使没有实验结构,新的模型也足以产生有趣的假设,可以通过实验来验证,比如评估与遗传疾病相关的变异是如何导致疾病的。通过在当前算法中使用的模式识别中添加明确的物理和化学,以及积极利用有限的实验观察,可以解决模型的局限性。我将讨论AlphaFold对结构生物信息学的影响,通过强调一些大规模的努力和开发的结构搜索工具来描述AlphaFold模型。

  • 探索AlphaFold的应用程序

  • 讨论目前AlphaFold在结构生物学中的优势和局限性

  • 识别结构预测对结构、计算生物学研究的影响

视频:

https://embl-ebi.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=5caed0b7-452b-4413-9f62-aeaf0107d2a0

e571466672fde6eb2dfb6e341ee93b61.png

9319cea4544d04f0c6946cff60b4a739.png

1f7962bc567c586f503605fe8a1ef3ef.png

779a4b44ee0eecdb73e503d9dc364d8e.png

dbe372107e43b3b48df1a46130def118.png

76fa27afb76d9134dc0ea874bdc90184.png

c2a224778a8551989db1675fb36ae802.png

e20ff8cb535095380dfaf99785cd667e.png

883df247a89a120de503e82045810d4c.png

41e6804e273e8fad9ab563746d7ff265.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值