定积分的计算(牛顿-莱布尼茨公式)习题

前置知识:定积分的计算(牛顿-莱布尼茨公式)

习题1

计算 ∫ 0 2 ( x 2 − 2 x + 3 ) d x \int_0^2(x^2-2x+3)dx 02(x22x+3)dx
解:
\qquad 原式 = ( 1 3 x 3 − x 2 + 3 x ) ∣ 0 2 = ( 8 3 − 4 + 6 ) − 0 = 14 3 =(\dfrac 13x^3-x^2+3x)\bigg\vert_0^2=(\dfrac 83-4+6)-0=\dfrac{14}{3} =(31x3x2+3x) 02=(384+6)0=314


习题2

计算 ∫ 0 2 π ∣ sin ⁡ x ∣ d x \int_0^{2\pi}|\sin x|dx 02πsinxdx

解:
\qquad 原式 = ∫ 0 π sin ⁡ x d x − ∫ π 2 π sin ⁡ x d x =\int_0^{\pi}\sin xdx-\int_{\pi}^{2\pi}\sin xdx =0πsinxdxπ2πsinxdx

= − cos ⁡ x ∣ 0 π + cos ⁡ x ∣ π 2 π \qquad\qquad =-\cos x\bigg\vert_0^{\pi}+\cos x\bigg\vert_{\pi}^{2\pi} =cosx 0π+cosx π2π

= 1 + 1 + 1 + 1 \qquad\qquad =1+1+1+1 =1+1+1+1

= 4 \qquad\qquad =4 =4


习题3

计算 ∫ 0 π 1 − sin ⁡ 2 x d x \int_0^{\pi}\sqrt{1-\sin 2x}dx 0π1sin2x dx

解:
\qquad 原式 = ∫ 0 π 1 − ( cos ⁡ 2 x − sin ⁡ 2 x ) d x =\int_0^{\pi}\sqrt{1-(\cos^2x-\sin^2x)}dx =0π1(cos2xsin2x) dx

= 2 ∫ 0 π sin ⁡ 2 x d x = 2 ∫ 0 π sin ⁡ x d x \qquad\qquad =\sqrt 2\int_0^{\pi}\sqrt{\sin^2 x}dx=\sqrt 2\int_0^{\pi}\sin xdx =2 0πsin2x dx=2 0πsinxdx

= − 2 cos ⁡ x ∣ 0 π = − 2 ⋅ ( − 1 − 1 ) = 2 2 \qquad\qquad =-\sqrt 2\cos x\bigg\vert_0^{\pi}=-\sqrt 2\cdot (-1-1)=2\sqrt 2 =2 cosx 0π=2 (11)=22


总结

只要熟练掌握不定积分的求法,就能熟练地解决这类题目。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值