数学分析(九)-定积分2:牛顿一莱布尼茨公式【定积分求解公式:∫ₐᵇf(x)dx=F(b)-F(a)=F(x)∣ₐᵇ】【f在[a,b]上可积(可不连续)】【在理论上把“定积分”与“不定积分”联系起来】

本文介绍了牛顿-莱布尼茨公式,它建立了定积分与不定积分之间的联系,简化了定积分的计算。通过定理9.1证明了连续函数在特定条件下可积,并提供了利用公式计算定积分的例子,如∫abxn dx、∫abex dx等。
摘要由CSDN通过智能技术生成

从上节例题和习题看到,通过求积分和的极限来计算定积分一般是很困难的.

下面要介绍的牛顿一莱布尼茨公式不仅为定积分计算提供了一个有效的方法,而且在理论上把定积分与不定积分联系了起来.

定理 9.1

若函数 f f f [ a , b ] [a, b] [a,b] 上连续, 且存在原函数 F F F, 即 F ′ ( x ) = f ( x ) , x ∈ [ a , b ] F^{\prime}(x)=f(x), x \in[a, b] F(x)=f(x),x[a,b],则 f f f [ a , b ] [a, b] [a,b] 上可积,且

∫ a b f ( x ) d x = F ( b ) − F ( a ) . ( 1 ) \int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) . \quad\quad(1) abf(x)dx=F(b)F(a).(1)

上式称为牛顿一莱布尼茨公式,它也常写成

∫ a b f ( x ) d x = F ( x ) ∣ a b . \int_{a}^{b} f(x) \mathrm{d} x=\left.F(x)\right|_{a} ^{b} . abf(x)dx=F(x)ab.

由定积分定义, 任给 ε > 0 \varepsilon>0 ε>0, 要证存在 δ > 0 \delta>0 δ>0, 当 ∥ T ∥ < δ \|T\|<\delta T<δ 时, 有 ∣ ∑ i = 1 n f ( ξ i ) Δ x i − [ F ( b ) − F ( a ) ] ∣ < ε \left|\sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i}-[F(b)-F(a)]\right|<\varepsilon i=1nf(ξi)Δxi[F(b)F(a)]<ε. 下面证明满足如此要求的 δ \delta δ 确实是存在的.

事实上, 对于 [ a , b ] [a, b] [a,b] 的任一分割 T = { a = x 0 , x 1 , ⋯   , x n = b } T=\left\{a=x_{0}, x_{1}, \cdots, x_{n}=b\right\} T={ a=x0,x1,,xn=b}, 在每个小区间 [ x i − 1 , x i ] \left[x_{i-1}, x_{i}\right] [xi1,xi]上对 F ( x ) F(x) F(x) 使用拉格朗日中值定理,则分别存在 η i ∈ ( x i − 1 , x i ) , i = 1 , 2 , ⋯   , n \eta_{i} \in\left(x_{i-1}, x_{i}\right), i=1,2, \cdots, n ηi(xi1,xi),i=1,2,,n,使得

F ( b ) − F ( a ) = ∑ i = 1 n [ F ( x i ) − F ( x i − 1 ) ] = ∑ i = 1 n F ′ ( η i ) Δ x i = ∑ i = 1 n f ( η i ) Δ x i . ( 2 ) \begin{aligned} F(b)-F(a) & =\sum_{i=1}^{n}\left[F\left(x_{i}\right)-F\left(x_{i-1}\right)\right] \\ & =\sum_{i=1}^{n} F^{\prime}\left(\eta_{i}\right) \Delta x_{i}=\sum_{i=1}^{n} f\left(\eta_{i}\right) \Delta x_{i} . \quad\quad(2) \end{aligned} F(b)F(a)=i=1n[F(xi)F(xi1)]=i=1nF

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值