定积分解题的一些特殊方法

文章讨论了黎曼积分的概念,证明了若两个函数在某一区间上满足f(x)≤g(x),则它们的黎曼积分也满足同样的不等式。举例说明了如何比较定积分的大小,并展示了如何利用牛顿-莱布尼茨公式解决涉及积分的函数方程问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

比较法

前置知识:黎曼积分的概念

f , g f,g f,g [ a , b ] [a,b] [a,b]上可积,如果在 [ a , b ] [a,b] [a,b] f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)g(x),则有

∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x \int_a^bf(x)dx\leq\int_a^bg(x)dx abf(x)dxabg(x)dx

证明: 因为

∫ a b f ( x ) d x − ∫ a b g ( x ) d x = ∫ a b [ f ( x ) − g ( x ) ] d x ≤ 0 \int_a^bf(x)dx-\int_a^bg(x)dx=\int_a^b[f(x)-g(x)]dx\leq 0 abf(x)dxabg(x)dx<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值