1废话
终于看到 PG 了,后边还要看 DDPG,TRPO,PPO,SAC,NAF,TD3,A3C等等,任重而道远啊。看完 model free 还想着重看看 model based,好多啊,不知道什么时候能接近前沿,努力吧,为了爱而奋斗。另外,越写越懒了,只做自己复习用,很多都省了,新手还是别看了,看不懂的。
这篇论文可以算是现在很多 PG 的鼻祖了,证明了 Deterministic PG 的可行性,为后面很多 PG 算法奠定了基础。
2 Motivation
对于连续性动作,以往的 Stochastic PG 需要求在状态S 和动作 A 的关于 reward 的期望,也就是采样时同时采样状态 S 和状态 A,而 Deterministic PG 则不需要对动作 A 采样,只需要对状态进行采样,所以效率大大提高。那么关键就是 Stochastic 和 Deterministic PG 有什么区别,如何得到 Deterministic PG。
3 PG
先对基本的定义进行说明。对于整个问题,先建模为一个 MDP 模型。初始状态概率密度为 ,
首先回顾下 Stochastic PG 吧。
3.1 Sotchastic PG
输出带有一定的随机性,则策略函数为