RL论文阅读【七】Deterministic Policy Gradient Algorithms

1废话

终于看到 PG 了,后边还要看 DDPG,TRPO,PPO,SAC,NAF,TD3,A3C等等,任重而道远啊。看完 model free 还想着重看看 model based,好多啊,不知道什么时候能接近前沿,努力吧,为了爱而奋斗。另外,越写越懒了,只做自己复习用,很多都省了,新手还是别看了,看不懂的。

这篇论文可以算是现在很多 PG 的鼻祖了,证明了 Deterministic PG 的可行性,为后面很多 PG 算法奠定了基础。

2 Motivation

对于连续性动作,以往的 Stochastic PG 需要求在状态S 和动作 A 的关于 reward 的期望,也就是采样时同时采样状态 S 和状态 A,而 Deterministic PG 则不需要对动作 A 采样,只需要对状态进行采样,所以效率大大提高。那么关键就是 Stochastic 和 Deterministic PG 有什么区别,如何得到 Deterministic PG。

3 PG

先对基本的定义进行说明。对于整个问题,先建模为一个 MDP 模型。初始状态概率密度为 P(s_{1}),

首先回顾下 Stochastic PG 吧。

3.1 Sotchastic PG

输出带有一定的随机性,则策略函数为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值