Vision Transformer(一):自注意力机制

文章探讨了注意力机制如何模仿人类的注意力行为,特别是在深度学习中,如神经网络如何通过自注意力机制筛选关键信息,忽略背景信息,以及如何通过QKV操作实现相关性判断。作者还提到了VIT等模型作为实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 注意力机制

注意力本质上是模仿人的行为。这种行为可以描述为人在观察一些事物时,会对感兴趣的区域会产生更多的聚焦,而会选择性的忽视(或者减少关注)另一些区域。

举个简单的例子,一些对跑车感兴趣的人,在路上看到看到某种日常难以见到的跑车时,注意力往往会聚焦到跑车上,而忽略其他车辆。

在这个例子中,跑车就像是神经网络中的“关键信息”,而其他车辆则类似于“背景信息”。注意力机制允许神经网络模型模仿这种人类专注于关键信息的能力,即在处理大量数据时自动“寻找”并集中处理最关键、最相关的信息片段,而非平等地处理所有信息。这种机制在提高模型处理效率和准确性方面非常有效。

从另一方面讲,关键信息会被增强,而其他背景信息会被削弱,由此来引起后续神经网络或其他识别系统的选择性关注。

2.

2. 注意力的产生

人对特定目标的注意力是怎么来的?

每个人感兴趣的事物不同,在所观察的场景中,聚焦的范围也不同。从另一方面讲,人类之所以产生注意力,更多的是因为感兴趣。而感兴趣,或者本身对某一事物的重要性判定产生是一个逐渐发展的过程,基于对事物的持续观察和理解。

同理,在深度学习中,一个神经网络模型的训练过程也是一个逐步发展的过程。就像人类通过不断的经验积累学会关注某些事物的关键方面一样,神经网络通过大量的数据训练逐渐学会识别和处理对当前任务最重要的信息。这个过程需要大量的数据和迭代,以便模型能够学习到如何有效地聚焦于关键特征,并在预测或决策时忽略不相关的信息。

3. 自注意力机制

相关性。

在图像领域,相关性是用来度量两幅图像的相似程度或一致性程度,两幅图像越相似,相关性越强。这种相关性会体现在像素级,结构性或更深层次的特征上。例如我们在学习图像处理时,经常会用的HOG,SIFT,SURF等提取特征向量,然后再通过欧氏距离,曼哈顿距离或余弦相似度、皮尔逊系数等方法度量相似度。

在注意力机制中,一般是通过QKV操作实现相似度判别。

这种机制的基本思想是增强相似元素之间的关系,而减弱不相似元素之间的关系。这一过程通过以下几个步骤实现:

查询(Query)、键(Key)和值(Value)的生成:对于序列中的每个元素,模型生成三个向量,即查询(Q)、键(K)和值(V)。这些向量通常通过不同的线性变换获得。

相似度计算:模型计算查询向量与每个键向量之间的相似度。这通常通过点积(或者其他相似度度量方式)来实现。点积的结果是一个标量,表示两个元素之间的相似程度。

注意力分数的归一化:通过softmax函数对这些相似度分数进行归一化。这一步骤确保了每个元素的注意力分数之和为1,并且更高的分数会被赋予相似度更高的元素。

权重应用与聚合:将归一化后的注意力分数应用于值(V)向量。如果一个元素的键与另一个元素的查询非常相似,那么这个元素的值向量将在最终输出中占据更大的比重。这意味着相似的元素在最终的表示中得到增强,而不相似的元素则被削弱。

输出生成:所有加权的值向量相加,生成最终的输出向量,这个向量是序列中每个元素考虑到其他所有元素后的综合表示。

这种机制使得模型能够捕捉和强调序列中重要的特征,同时忽略那些不相关或者不重要的信息,从而在处理复杂的语言结构时表现出色。

具体实现方式,推荐参考下面两个连接就可以了。在本文中不再重复造轮子了。

Vision Transformer(VIT)-CSDN博客

自注意力机制(Self-Attention)-CSDN博客

<think>好的,用户的问题是关于如何在Vision Transformer(ViT)中引入注意力机制,需要实现方法、理论解释和代码示例。首先,我需要回忆下ViT的基本结构以及注意力机制在其中的作用。ViT将图像分割成多个小块,将这些小块线性嵌入后加上位置编码,然后通过多个Transformer编码器层进行处理。每个编码器层包含多头自注意力机制和前馈神经网络。 用户可能已经知道ViT的基本概念,但不太清楚注意力机制具体是如何集成进去的。需要详细解释自注意力机制在ViT中的工作原理,特别是在处理图像块时的应用。同时,用户可能需要了解如何在实际代码中实现这点,可能需要参考PyTorch或TensorFlow的实现示例。 接下来,理论解释部分需要说明自注意力机制如何帮助模型捕捉图像块之间的长程依赖关系,这与传统CNN的局部感受野形成对比。还要提到多头注意力的优势,即允许模型在不同的子空间中学习信息。 代码示例方面,可能需要展示个简化的ViT编码器层,包括多头自注意力模块。需要注意的是代码的结构,比如如何将图像块转换为序列,如何计算注意力分数,以及前馈网络的部分。同时,引用相关的库和资源,如Hugging Face的Transformers库或者PyTorch的实现,这样用户可以有进步的参考。 用户可能还会有疑问,比如如何调整注意力头的数量,如何处理不同大小的图像,或者如何优化注意力计算的效率。不过根据当前问题,可能暂时不需要深入这些细节,但可以放在相关问题中引导用户进步探索。 需要确保回答符合之前的系统级指令,比如正确使用LaTeX格式,行内公式用$...$,独立公式用$$...$$。同时,生成的相关问题要围绕ViT和注意力机制,例如应用场景、与CNN的比较、性能优化等。 检查引用部分是否恰当,用户提供的引用中有提到ViT的结构和注意力机制,需要正确引用这些部分。例如,在解释ViT结构时引用[^3],在提到多头注意力实现时引用[^2]。 最后,确保回答结构清晰,分步骤解释实现方法和理论,代码示例正确且易于理解,相关问题具有针对性,帮助用户深入理解ViT中的注意力机制。</think>在Vision Transformer(ViT)中引入注意力机制主要通过**多头自注意力模块**实现,这是其编码器层的核心组件。以下是分步实现方法、理论解释和代码示例: --- ### 、理论解释 1. **图像分块与嵌入** 将输入图像分割为$N$个$16 \times 16$的块(patch),每个块通过线性映射转换为$D$维向量,得到序列$X \in \mathbb{R}^{N \times D}$[^3]。 2. **位置编码** 为保留空间信息,添加可学习的位置编码$P \in \mathbb{R}^{N \times D}$,得到输入嵌入: $$ Z_0 = X + P $$ 3. **编码器结构** 每个编码器层包含: - **多头自注意力(Multi-Head Self-Attention, MHSA)**:捕捉全局依赖关系 - **前馈网络(FFN)**:非线性特征变换 - **层归化(LayerNorm)**和**残差连接** 4. **自注意力机制公式** 对于输入$Z$,计算查询$Q$、键$K$、值$V$: $$ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{D}}\right)V $$ 其中$Q=ZW_Q$, $K=ZW_K$, $V=ZW_V$,$W_Q,W_K,W_V \in \mathbb{R}^{D \times D}$为可学习参数。 --- ### 二、实现方法 #### 步骤1:图像分块 ```python import torch import torch.nn as nn class PatchEmbedding(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): x = self.proj(x) # (B, D, H/P, W/P) x = x.flatten(2).transpose(1, 2) # (B, N, D) return x ``` #### 步骤2:多头自注意力模块 ```python class MultiHeadAttention(nn.Module): def __init__(self, embed_dim=768, num_heads=12): super().__init__() self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.qkv = nn.Linear(embed_dim, embed_dim * 3) self.proj = nn.Linear(embed_dim, embed_dim) def forward(self, x): B, N, D = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) / (self.head_dim ** 0.5) attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, N, D) return self.proj(x) ``` #### 步骤3:完整编码器层 ```python class TransformerBlock(nn.Module): def __init__(self, embed_dim=768, num_heads=12, mlp_ratio=4.0): super().__init__() self.norm1 = nn.LayerNorm(embed_dim) self.attn = MultiHeadAttention(embed_dim, num_heads) self.norm2 = nn.LayerNorm(embed_dim) self.mlp = nn.Sequential( nn.Linear(embed_dim, int(embed_dim * mlp_ratio)), nn.GELU(), nn.Linear(int(embed_dim * mlp_ratio), embed_dim) ) def forward(self, x): x = x + self.attn(self.norm1(x)) x = x + self.mlp(self.norm2(x)) return x ``` --- ### 三、核心优势 1. **全局感受野**:自注意力允许任意两个图像块直接交互,克服了CNN的局部性限制[^3] 2. **动态权重分配**:通过注意力权重$\text{softmax}\left(\frac{QK^T}{\sqrt{D}}\right)$自动学习特征相关性 3. **多模态扩展**:可与CNN结合或扩展到视频、点云等数据 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值