结式的两种定义以及相等证明

【定理】

A ( x ) = ∑ i = 0 m a i x i               B ( x ) = ∑ i = 0 n b i x i              ∈               R [ x ] A(x) = \sum_{i = 0}^{m}{a_{i}x^{i}}\ \ \ \ \ \ \ \ \ \ \ \ \ B(x) = \sum_{i = 0}^{n}{b_{i}x^{i}}\mathcal{\ \ \ \ \ \ \ \ \ \ \ \ \in \ \ \ \ \ \ \ \ \ \ \ \ \ R}\lbrack x\rbrack A(x)=i=0maixi             B(x)=i=0nbixi                         R[x]

这里 m = deg ⁡ ( A , x ) 、 n = deg ⁡ ( B , x ) m = \deg(A,x)、n = \deg(B,x) m=deg(A,x)n=deg(B,x),而 R \mathcal{R} R为一个代数闭域。设 α i ( i = 1 , … , m ) \alpha_{i}(i = 1,\ldots,m) αi(i=1,,m) β j ( j = 1 , … , n ) \beta_{j}(j = 1,\ldots,n) βj(j=1,,n)分别是 A A A B B B的代数闭域上的零点,那么有恒等式:

r e s ( A , B , x ) = a m n ∏ i = 1 m B ( α i ) = ( − 1 ) m n b n m ∏ j = 1 n A ( β i ) = a m n b n m ∏ i = 1 m ∏ j = 1 n ( α i − β j ) res(A,B,x) = a_{m}^{n}\prod_{i = 1}^{m}{B\left( \alpha_{i} \right)} = ( - 1)^{mn}b_{n}^{m}\prod_{j = 1}^{n}{A\left( \beta_{i} \right)} = a_{m}^{n}b_{n}^{m}\prod_{i = 1}^{m}{\prod_{j = 1}^{n}\left( \alpha_{i} - \beta_{j} \right)} res(A,B,x)=amni=1mB(αi)=(1)mnbnmj=1nA(βi)=amnbnmi=1mj=1n(αiβj)

【证明思路】

利用数学归纳法来证明,

r e s ( A , B , x ) = a m n ∏ i = 1 m B ( α i ) res(A,B,x) = a_{m}^{n}\prod_{i = 1}^{m}{B\left( \alpha_{i} \right)} res(A,B,x)=amni=1mB(αi)

m = 6 、 n = 5 m = 6、n = 5 m=6n=5为例子证明。

1.当 k = m = 1 k = m = 1 k=m=1时,有

r e s ( A , B , x ) = ∣ a 1 a 0 0 0 0 0 0 a 1 a 0 0 0 0 0 0 a 1 a 0 0 0 0 0 0 a 1 a 0 0 0 0 0 0 a 1 a 0 b 5 b 4 b 3 b 2 b 1 b 0 ∣ = ∣ a 1 a 0 0 0 0 x 4 A ( x ) 0 a 1 a 0 0 0 x 3 A ( x ) 0 0 a 1 a 0 0 x 2 A ( x ) 0 0 0 a 1 a 0 x 1 A ( x ) 0 0 0 0 a 1 A ( x ) b 5 b 4 b 3 b 2 b 1 B ( x ) ∣ res(A,B,x) = \left| \begin{matrix} a_{1} & a_{0} & 0 & 0 & 0 & 0 \\ 0 & a_{1} & a_{0} & 0 & 0 & 0 \\ 0 & 0 & a_{1} & a_{0} & 0 & 0 \\ 0 & 0 & 0 & a_{1} & a_{0} & 0 \\ 0 & 0 & 0 & 0 & a_{1} & a_{0} \\ b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \end{matrix} \right| = \left| \begin{matrix} a_{1} & a_{0} & 0 & 0 & 0 & x^{4}A(x) \\ 0 & a_{1} & a_{0} & 0 & 0 & x^{3}A(x) \\ 0 & 0 & a_{1} & a_{0} & 0 & x^{2}A(x) \\ 0 & 0 & 0 & a_{1} & a_{0} & x^{1}A(x) \\ 0 & 0 & 0 & 0 & a_{1} & A(x) \\ b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & B(x) \end{matrix} \right| res(A,B,x)= a10000b5a0a1000b40a0a100b300a0a10b2000a0a1b10000a0b0 = a10000b5a0a1000b40a0a100b300a0a10b2000a0a1b1x4A(x)x3A(x)x2A(x)x1A(x)A(x)B(x)

可以让 x = α 1 x = \alpha_{1} x=α1,那么

r e s ( A , B , x ) = ∣ a 1 a 0 0 0 0 0 0 a 1 a 0 0 0 0 0 0 a 1 a 0 0 0 0 0 0 a 1 a 0 0 0 0 0 0 a 1 0 b 5 b 4 b 3 b 2 b 1 B ( α 1 ) ∣ = B ( α 1 ) ∣ a 1 a 0 0 0 0 0 a 1 a 0 0 0 0 0 a 1 a 0 0 0 0 0 a 1 a 0 0 0 0 0 a 1 ∣ = a 1 5 B ( α 1 ) res(A,B,x) = \left| \begin{matrix} a_{1} & a_{0} & 0 & 0 & 0 & 0 \\ 0 & a_{1} & a_{0} & 0 & 0 & 0 \\ 0 & 0 & a_{1} & a_{0} & 0 & 0 \\ 0 & 0 & 0 & a_{1} & a_{0} & 0 \\ 0 & 0 & 0 & 0 & a_{1} & 0 \\ b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & B\left( \alpha_{1} \right) \end{matrix} \right| = B\left( \alpha_{1} \right)\left| \begin{matrix} a_{1} & a_{0} & 0 & 0 & 0 \\ 0 & a_{1} & a_{0} & 0 & 0 \\ 0 & 0 & a_{1} & a_{0} & 0 \\ 0 & 0 & 0 & a_{1} & a_{0} \\ 0 & 0 & 0 & 0 & a_{1} \end{matrix} \right| = a_{1}^{5}B\left( \alpha_{1} \right) res(A,B,x)= a10000b5a0a1000b40a0a100b300a0a10b2000a0a1b100000B(α1) =B(α1) a10000a0a10000a0a10000a0a10000a0a1 =a15B(α1)

2.当 k = m − 1 k = m - 1 k=m1时成立,即

r e s ( A ( 5 )   , B , x ) = a 5 5 ∏ i = 1 5 B ( α i ) res\left( A_{(5)}\ ,B,x \right) = a_{5}^{5}\prod_{i = 1}^{5}{B\left( \alpha_{i} \right)} res(A(5) ,B,x)=a55i=15B(αi)

下面证明令 k = m k = m k=m时成立

r e s ( A , B , x ) = ∣ a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 a 6 a 5 a 4 a 3 a 2 a 1 a 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 b 4 b 3 b 2 b 1 b 0 ∣ res(A,B,x) = \left| \begin{matrix} a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 \\ 0 & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 \\ 0 & 0 & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 \\ 0 & 0 & 0 & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & 0 & 0 & 0 & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \\ b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \end{matrix} \right| res(A,B,x)= a60000b500000a5a6000b4b50000a4a5a600b3b4b5000a3a4a5a60b2b3b4b500a2a3a4a5a6b1b2b3b4b50a1a2a3a4a5b0b1b2b3b4b5a0a1a2a3a40b0b1b2b3b40a0a1a2a300b0b1b2b300a0a1a2000b0b1b2000a0a10000b0b10000a000000b0

需要注意, A ( x ) \mathbf{A}\left( \mathbf{x} \right) A(x) a 6 \mathbf{a}_{\mathbf{6}} a6 B ( x ) \mathbf{B}\left( \mathbf{x} \right) B(x) b 0 \mathbf{b}_{\mathbf{0}} b0正好都处于行列式对角线上。

将第1列乘以 α 1 \alpha_{1} α1加到第2行,然后将第2列乘以 α 1 \alpha_{1} α1加到第3行、第3列乘以 α 1 \alpha_{1} α1加到第4行,重复进行下去,将倒数第二列乘以 α 1 \alpha_{1} α1加到最后一列。

a 6 ′ = a 6 a_{6}^{'} = a_{6} a6=a6

a 5 ′ = a 5 + α 1 a 6 ′ a_{5}^{'} = a_{5} + \alpha_{1}a_{6}^{'} a5=a5+α1a6

a 4 ′ = a 4 + α 1 a 5 ′ a_{4}^{'} = a_{4} + \alpha_{1}a_{5}^{'} a4=a4+α1a5

a 3 ′ = a 3 + α 1 a 4 ′ a_{3}^{'} = a_{3} + \alpha_{1}a_{4}^{'} a3=a3+α1a4

a 2 ′ = a 2 + α 1 a 3 ′ a_{2}^{'} = a_{2} + \alpha_{1}a_{3}^{'} a2=a2+α1a3

a 1 ′ = a 1 + α 1 a 2 ′ a_{1}^{'} = a_{1} + \alpha_{1}a_{2}^{'} a1=a1+α1a2

a 0 ′ = a 0 + α 1 a 1 ′ ≡ 0 a_{0}^{'} = a_{0} + \alpha_{1}a_{1}^{'} \equiv 0 a0=a0+α1a10

b 5 ′ = b 5 ′ b_{5}^{'} = b_{5}^{'} b5=b5

b 4 ′ = b 4 + α 1 b 5 ′ b_{4}^{'} = b_{4} + \alpha_{1}b_{5}^{'} b4=b4+α1b5

b 3 ′ = b 3 + α 1 b 4 ′ b_{3}^{'} = b_{3} + \alpha_{1}b_{4}^{'} b3=b3+α1b4

b 2 ′ = b 2 + α 1 b 3 ′ b_{2}^{'} = b_{2} + \alpha_{1}b_{3}^{'} b2=b2+α1b3

b 1 ′ = b 1 + α 1 b 2 ′ b_{1}^{'} = b_{1} + \alpha_{1}b_{2}^{'} b1=b1+α1b2

b 0 ′ = b 0 + α 1 b 1 ′ b_{0}^{'} = b_{0} + \alpha_{1}b_{1}^{'} b0=b0+α1b1

可得

r e s ( A , B , x ) = ∣ a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ a 0 ′ α 1 a 0 ′ α 1 2 a 0 ′ α 1 3 a 0 ′ α 1 4 a 0 ′ 0 a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ a 0 ′ α 1 a 0 ′ α 1 2 a 0 ′ α 1 3 a 0 ′ 0 0 a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ a 0 ′ α 1 a 0 ′ α 1 2 a 0 ′ 0 0 0 a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ a 0 ′ α 1 a 0 ′ 0 0 0 0 a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ a 0 ′ b 5 ′ b 4 ′ b 3 ′ b 2 ′ b 1 ′ b 0 ′ α 1 b 0 ′ α 1 2 b 0 ′ α 1 3 b 0 ′ α 1 4 b 0 ′ α 1 5 b 0 ′ 0 b 5 ′ b 4 ′ b 3 ′ b 2 ′ b 1 ′ b 0 ′ α 1 b 0 ′ α 1 2 b 0 ′ α 1 3 b 0 ′ α 1 4 b 0 ′ 0 0 b 5 ′ b 4 ′ b 3 ′ b 2 ′ b 1 ′ b 0 ′ α 1 b 0 ′ α 1 2 b 0 ′ α 1 3 b 0 ′ 0 0 0 b 5 ′ b 4 ′ b 3 ′ b 2 ′ b 1 ′ b 0 ′ α 1 b 0 ′ α 1 2 b 0 ′ 0 0 0 0 b 5 ′ b 4 ′ b 3 ′ b 2 ′ b 1 ′ b 0 ′ α 1 b 0 ′ 0 0 0 0 0 b 5 ′ b 4 ′ b 3 ′ b 2 ′ b 1 ′ b 0 ′ ∣ res(A,B,x) = \left| \begin{matrix} a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & a_{0}^{'} & \alpha_{1}a_{0}^{'} & \alpha_{1}^{2}a_{0}^{'} & \alpha_{1}^{3}a_{0}^{'} & \alpha_{1}^{4}a_{0}^{'} \\ 0 & a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & a_{0}^{'} & \alpha_{1}a_{0}^{'} & \alpha_{1}^{2}a_{0}^{'} & \alpha_{1}^{3}a_{0}^{'} \\ 0 & 0 & a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & a_{0}^{'} & \alpha_{1}a_{0}^{'} & \alpha_{1}^{2}a_{0}^{'} \\ 0 & 0 & 0 & a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & a_{0}^{'} & \alpha_{1}a_{0}^{'} \\ 0 & 0 & 0 & 0 & a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & a_{0}^{'} \\ b_{5}^{'} & b_{4}^{'} & b_{3}^{'} & b_{2}^{'} & b_{1}^{'} & b_{0}^{'} & \alpha_{1}b_{0}^{'} & \alpha_{1}^{2}b_{0}^{'} & \alpha_{1}^{3}b_{0}^{'} & \alpha_{1}^{4}b_{0}^{'} & \alpha_{1}^{5}b_{0}^{'} \\ 0 & b_{5}^{'} & b_{4}^{'} & b_{3}^{'} & b_{2}^{'} & b_{1}^{'} & b_{0}^{'} & \alpha_{1}b_{0}^{'} & \alpha_{1}^{2}b_{0}^{'} & \alpha_{1}^{3}b_{0}^{'} & \alpha_{1}^{4}b_{0}^{'} \\ 0 & 0 & b_{5}^{'} & b_{4}^{'} & b_{3}^{'} & b_{2}^{'} & b_{1}^{'} & b_{0}^{'} & \alpha_{1}b_{0}^{'} & \alpha_{1}^{2}b_{0}^{'} & \alpha_{1}^{3}b_{0}^{'} \\ 0 & 0 & 0 & b_{5}^{'} & b_{4}^{'} & b_{3}^{'} & b_{2}^{'} & b_{1}^{'} & b_{0}^{'} & \alpha_{1}b_{0}^{'} & \alpha_{1}^{2}b_{0}^{'} \\ 0 & 0 & 0 & 0 & b_{5}^{'} & b_{4}^{'} & b_{3}^{'} & b_{2}^{'} & b_{1}^{'} & b_{0}^{'} & \alpha_{1}b_{0}^{'} \\ 0 & 0 & 0 & 0 & 0 & b_{5}^{'} & b_{4}^{'} & b_{3}^{'} & b_{2}^{'} & b_{1}^{'} & b_{0}^{'} \end{matrix} \right| res(A,B,x)= a60000b500000a5a6000b4b50000a4a5a600b3b4b5000a3a4a5a60b2b3b4b500a2a3a4a5a6b1b2b3b4b50a1a2a3a4a5b0b1b2b3b4b5a0a1a2a3a4α1b0b0b1b2b3b4α1a0a0a1a2a3α12b0α1b0b0b1b2b3α12a0α1a0a0a1a2α13b0α12b0α1b0b0b1b2α13a0α12a0α1a0a0a1α14b0α13b0α12b0α1b0b0b1α14a0α13a0α12a0α1a0a0α15b0α14b0α13b0α12b0α1b0b0

b i ′ b_{i}^{'} bi所在几行(第6行)开始,第6行减去"第7行乘以 α 1 \alpha_{1} α1“,第7行减去"第8行乘以 α 1 \alpha_{1} α1”,重复进行直至最后第二行减去"最后一行乘以 α 1 \alpha_{1} α1",可得

r e s ( A , B , x ) = ∣ a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ a 0 ′ α 1 a 0 ′ α 1 2 a 0 ′ α 1 3 a 0 ′ α 1 4 a 0 ′ 0 a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ a 0 ′ α 1 a 0 ′ α 1 2 a 0 ′ α 1 3 a 0 ′ 0 0 a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ a 0 ′ α 1 a 0 ′ α 1 2 a 0 ′ 0 0 0 a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ a 0 ′ α 1 a 0 ′ 0 0 0 0 a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ a 0 ′ b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 ′ b 4 ′ b 3 ′ b 2 ′ b 1 ′ b 0 ′ ∣ res(A,B,x) = \left| \begin{matrix} a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & a_{0}^{'} & \alpha_{1}a_{0}^{'} & \alpha_{1}^{2}a_{0}^{'} & \alpha_{1}^{3}a_{0}^{'} & \alpha_{1}^{4}a_{0}^{'} \\ 0 & a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & a_{0}^{'} & \alpha_{1}a_{0}^{'} & \alpha_{1}^{2}a_{0}^{'} & \alpha_{1}^{3}a_{0}^{'} \\ 0 & 0 & a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & a_{0}^{'} & \alpha_{1}a_{0}^{'} & \alpha_{1}^{2}a_{0}^{'} \\ 0 & 0 & 0 & a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & a_{0}^{'} & \alpha_{1}a_{0}^{'} \\ 0 & 0 & 0 & 0 & a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & a_{0}^{'} \\ b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{5}^{'} & b_{4}^{'} & b_{3}^{'} & b_{2}^{'} & b_{1}^{'} & b_{0}^{'} \end{matrix} \right| res(A,B,x)= a60000b500000a5a6000b4b50000a4a5a600b3b4b5000a3a4a5a60b2b3b4b500a2a3a4a5a6b1b2b3b4b50a1a2a3a4a5b0b1b2b3b4b5a0a1a2a3a40b0b1b2b3b4α1a0a0a1a2a300b0b1b2b3α12a0α1a0a0a1a2000b0b1b2α13a0α12a0α1a0a0a10000b0b1α14a0α13a0α12a0α1a0a000000b0

由于 a 0 ′ = a 0 + α 1 a 1 ′ = A ( α 1 ) = 0 、 b 0 ′ = B ( α 1 ) a_{0}^{'} = a_{0} + \alpha_{1}a_{1}^{'} = A\left( \alpha_{1} \right) = 0、b_{0}^{'} = B\left( \alpha_{1} \right) a0=a0+α1a1=A(α1)=0b0=B(α1),所以

r e s ( A , B , x ) = ∣ a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ 0 0 0 0 0 0 a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ 0 0 0 0 0 0 a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ 0 0 0 0 0 0 a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ 0 0 0 0 0 0 a 6 ′ a 5 ′ a 4 ′ a 3 ′ a 2 ′ a 1 ′ 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 5 ′ b 4 ′ b 3 ′ b 2 ′ b 1 ′ B ( α 1 ) ∣ res(A,B,x) = \left| \begin{matrix} a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & 0 & 0 & 0 & 0 & 0 \\ 0 & a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{6}^{'} & a_{5}^{'} & a_{4}^{'} & a_{3}^{'} & a_{2}^{'} & a_{1}^{'} & 0 \\ b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{5}^{'} & b_{4}^{'} & b_{3}^{'} & b_{2}^{'} & b_{1}^{'} & B\left( \alpha_{1} \right) \end{matrix} \right| res(A,B,x)= a60000b500000a5a6000b4b50000a4a5a600b3b4b5000a3a4a5a60b2b3b4b500a2a3a4a5a6b1b2b3b4b50a1a2a3a4a5b0b1b2b3b4b50a1a2a3a40b0b1b2b3b400a1a2a300b0b1b2b3000a1a2000b0b1b20000a10000b0b10000000000B(α1)

A ′ ( x ) = a 6 ( x − α 2 ) ( x − α 3 ) ( x − α 4 ) ( x − α 5 ) ( x − α 6 ) A^{'}(x) = a_{6}\left( x - \alpha_{2} \right)\left( x - \alpha_{3} \right)\left( x - \alpha_{4} \right)\left( x - \alpha_{5} \right)\left( x - \alpha_{6} \right) A(x)=a6(xα2)(xα3)(xα4)(xα5)(xα6)

那么有

A ′ ( x ) = a 6 ′ x 5 + a 5 ′ x 4 + a 4 ′ x 3 + a 3 ′ x 2 + a 2 ′ x 1 + a 1 ′ A^{'}(x) = a_{6}^{'}x^{5} + a_{5}^{'}x^{4} + a_{4}^{'}x^{3} + a_{3}^{'}x^{2} + a_{2}^{'}x^{1} + a_{1}^{'} A(x)=a6x5+a5x4+a4x3+a3x2+a2x1+a1

所以

r e s ( A , B , x ) = B ( α 1 ) r e s ( A ′ , B , x ) = B ( α 1 ) a 6 5 ∏ i = 2 6 B ( α i ) = a 6 5 ∏ i = 1 6 B ( α i ) res(A,B,x) = B\left( \alpha_{1} \right)res\left( A^{'},B,x \right) = B\left( \alpha_{1} \right)a_{6}^{5}\prod_{i = 2}^{6}{B\left( \alpha_{i} \right)} = a_{6}^{5}\prod_{i = 1}^{6}{B\left( \alpha_{i} \right)} res(A,B,x)=B(α1)res(A,B,x)=B(α1)a65i=26B(αi)=a65i=16B(αi)

也就是 k = m k = m k=m时成立。

3.同理可证

r e s ( A , B , x ) = ( − 1 ) m n b n m ∏ j = 1 n A ( β i ) res(A,B,x) = ( - 1)^{mn}b_{n}^{m}\prod_{j = 1}^{n}{A\left( \beta_{i} \right)} res(A,B,x)=(1)mnbnmj=1nA(βi)

注意需要先将 B ( x ) B(x) B(x)的系数移动到行列式最前面几行。

4.因为

B ( x ) = b n m ∏ j = 1 n ( x − β j ) B(x) = b_{n}^{m}\prod_{j = 1}^{n}\left( x - \beta_{j} \right) B(x)=bnmj=1n(xβj)

代入

r e s ( A , B , x ) = a m n ∏ i = 1 m B ( α i ) res(A,B,x) = a_{m}^{n}\prod_{i = 1}^{m}{B\left( \alpha_{i} \right)} res(A,B,x)=amni=1mB(αi)

可得

r e s ( A , B , x ) = a m n b n m ∏ i = 1 m ∏ j = 1 n ( α i − β j ) res(A,B,x) = a_{m}^{n}b_{n}^{m}\prod_{i = 1}^{m}{\prod_{j = 1}^{n}\left( \alpha_{i} - \beta_{j} \right)} res(A,B,x)=amnbnmi=1mj=1n(αiβj)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值