机敏问答[概率][3] #20210619


本专栏主要作个人复习自测,有相关知识预备的同学也可作复习用。不保证无相应基础的人士能看明白。
万一考试考到了,或者对你的学习有较大帮助,一键三连不过分吧(斜眼笑)

多元特征函数

  1. 一元特征函数的 t x tx tx对应多元特征函数的什么?由此 a ⃗ T X ⃗ \vec a^T\vec X a TX 的特征函数怎么求?
  2. 将一元特征函数的上界1、“共轭”、一致连续、线性变换、矩、独立与乘积等相应结论推广到多元。
  3. 边缘分布的特征函数怎么求?
  4. 说出如何用一元”傅里叶逆变换“公式记忆多元逆转公式。
  5. 唯一性定理和两个随机向量独立有什么联系?
  6. 为了考察随机变量列的收敛性,我们往往考察特征函数列的收敛性。连续性定理:如果特征函数列收敛于()函数,则收敛结果一定是某个分布函数对应的特征函数。

答案

  1. ”内积“, f a ⃗ T X ⃗ ( t ) = E e i t a ⃗ T X ⃗ = f X ⃗ ( t a ⃗ ) f_{\vec a^T \vec X}(t)=Ee^{it\vec a^T\vec X}=f_{\vec X}(t\vec a) fa TX (t)=Eeita TX =fX (ta )
  2. ∣ ∣ f ( t ⃗ ) ∣ ∣ ≤ f ( 0 ) = 1 , f ( − t ⃗ ) = f ˉ ( t ⃗ ) , f Σ X ⃗ + μ ⃗ ( t ⃗ ) = e i t ⃗ T μ ⃗ f X ⃗ ( Σ T t ⃗ ) ||f(\vec t)||\le f(0)=1,f(-\vec t)=\bar f(\vec t),f_{\Sigma \vec X+\vec \mu}(\vec t)=e^{i\vec t^T\vec \mu}f_{\vec X}(\Sigma^T \vec t) f(t )f(0)=1,f(t )=fˉ(t ),fΣX +μ (t )=eit Tμ fX (ΣTt )(注意转置)
    E X 1 2 X 2 2 = i − 4 ∂ t 1 t 1 t 2 t 2 f ∣ t ⃗ = 0 , f X ⃗ + Y ⃗ ( t ⃗ ) = f X ⃗ ( t ⃗ ) f Y ⃗ ( t ⃗ ) EX_1^2X_2^2=i^{-4} \partial_{t_1t_1t_2t_2}f|_{\vec t=0},f_{\vec X+\vec Y}(\vec t)=f_{\vec X}(\vec t)f_{\vec Y}(\vec t) EX12X22=i4t1t1t2t2ft =0,fX +Y (t )=fX (t )fY (t )(注:最后一式不等价于独立)
  3. 根据定义,得只用把向量 t ⃗ \vec t t 若干维设为0.
  4. 先记忆一元,即 F ( b ) − F ( a ) = 1 2 π l i m T → + ∞ ∫ − T T e − i t b − e − i t a − i t d t F(b)-F(a)=\frac 1{2\pi}lim_{T\to+\infty}\int_{-T}^T\frac{e^{-itb}-e^{-ita}}{-it}dt F(b)F(a)=2π1limT+TTiteitbeitadt,然后乘。注意系数别漏。
  5. 分布由特征函数唯一决定。因此 f 总 ( a ⃗ , b ⃗ ) = f 1 ( a ⃗ ) f 2 ( b ⃗ ) f_总(\vec a,\vec b)=f_1(\vec a)f_2(\vec b) f(a ,b )=f1(a )f2(b )时独立。
  6. 连续

数字特征练习

  1. 利用二项分布 B ( n , p ) B(n,p) B(n,p) B ( n , q ) B(n,q) B(n,q) B ( n , p + q ) B(n,p+q) B(n,p+q)的数字特征计算多项分布 P ( X i = k i , i = 1 , ⋯   , r ) = n ! ∏ i k i ! ∏ i p i k i P(X_i=k_i,i=1,\cdots,r)=\frac{n!}{\prod_ik_i!}\prod_ip_i^{k_i} P(Xi=ki,i=1,,r)=iki!n!ipiki X i X_i Xi X j X_j Xj的相关系数。
  2. 二元随机变量,边缘分布是正态分布,联合分布一定是吗?
  3. 相比对总体 N N N(可以理解为 N N N张写有不同数的卡片)进行有放回抽样(独立重复实验)时 n n n次结果和 S n S_n Sn的方差 n σ 2 n\sigma^2 nσ2,无放回抽样时的方差为什么变了?直观说明是变大还是变小,并通过求两次抽样结果的协方差求 n n n次结果和的方差。
  4. 2.与超几何分布有何联系?
  5. 利用 Γ \Gamma Γ函数求正态随机变量的 k k k阶矩。直接背诵4阶中心矩。
  6. 背诵二元正态随机变量的条件密度并指出这是什么分布,直觉上指出条件期望、方差边缘分布的期望和方差之间的大小关系。
  7. 5.中出现的 ρ σ 2 / σ 1 , σ 2 2 ( 1 − ρ 2 ) \rho \sigma_2/\sigma_1,\sigma^2_2(1-\rho^2) ρσ2/σ1,σ22(1ρ2)和最佳线性预测有什么联系?

答案

  1. 利用和的方差的公式。
  2. 不一定。提示:二元积分,两种顺序内层积分恒为0,二元函数不一定恒为0.
  3. 变小,因为“不确定性”更小。 N σ 2 + N ( N − 1 ) c o v = 0 , c o v = − σ 2 / ( N − 1 ) , D S n = n σ 2 N − n N − 1 N\sigma^2+N(N-1)cov=0,cov=-\sigma^2/(N-1),DS_n=n\sigma^2\frac{N-n}{N-1} Nσ2+N(N1)cov=0,cov=σ2/(N1),DSn=nσ2N1Nn
  4. N N N张卡片, M M M张写1,无放回抽取 n n n张。
  5. 只用考虑偶数阶,此时换元令 e e e指数为 z z z,则得到含有 Γ \Gamma Γ函数 Γ ( k + 1 2 ) \Gamma(\frac{k+1}2) Γ(2k+1)的结果。再注意 Γ ( 1 / 2 ) = π , Γ ( x + 1 ) = x Γ ( x ) \Gamma(1/2)=\sqrt{\pi},\Gamma(x+1)=x\Gamma(x) Γ(1/2)=π ,Γ(x+1)=xΓ(x). 3 σ 4 3\sigma^4 3σ4
  6. p y ∣ x ( y ) = 1 2 π σ 2 1 − ρ 2 e x p ( − 1 2 σ 2 2 ( 1 − ρ 2 ) ( y − ( μ 2 + ρ σ 2 σ 1 ( x − μ 1 ) ) ) ) p_{y|x}(y)=\frac{1}{\sqrt{2\pi}\sigma_2\sqrt{1-\rho^2}}exp(-\frac1{2\sigma^2_2(1-\rho^2)}(y-(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x-\mu_1)))) pyx(y)=2π σ21ρ2 1exp(2σ22(1ρ2)1(y(μ2+ρσ1σ2(xμ1))))
    期望根据相关性变。方差相比边缘分布更小,因为“确定”了一些东西。
  7. “斜率”估计值 c o v ( X , Y ) / v a r ( X ) cov(X,Y)/var(X) cov(X,Y)/var(X). 均方误差。

母函数、特征函数练习

  1. 为什么对非负整数随机变量,母函数和分布一一对应?借此简要说明泊松逼近定理。
  2. 帕斯卡分布表示独立重复实验中第 r r r次()出现时的() Z Z Z的概率分布, Z Z Z可以拆成 r r r个相互独立的()分布的随机变量之和,所以帕斯卡分布的母函数为()。
  3. 求有多少种有序排列 ( a , b , c , d , e ) (a,b,c,d,e) (a,b,c,d,e),其中每个数都是1~6(含)的正整数且可以重复,使得它们的和为15.
  4. 请利用母函数证明复合泊松分布在每个 ξ i \xi_i ξi的分布取()时,是参数为()的泊松分布。
  5. 用定义求 Γ ( r , λ ) \Gamma(r,\lambda) Γ(r,λ)的特征函数并由此求指数分布和卡方分布的特征函数。(已知:通过复分析的柯西定理,可以证明 ∫ 0 ∞ x r − 1 e − x d x = ∫ γ 0 → ∞ , 方 向 与 正 实 轴 成 锐 角 z r − 1 e − z d z \int_0^\infty x^{r-1}e^{-x}dx=\int_{\gamma_{0\to\infty,方向与正实轴成锐角}} z^{r-1}e^{-z}dz 0xr1exdx=γ0,zr1ezdz
  6. 形式运算说明泊松变量 E X f ( X ) = λ E f ( X + 1 ) EXf(X)=\lambda Ef(X+1) EXf(X)=λEf(X+1),标准正态变量 E X f ( X ) = E f ′ ( X ) EXf(X)=Ef'(X) EXf(X)=Ef(X)

答案

  1. 泰勒。 ( q + p s ) n = ( 1 + p ( s − 1 ) ) n : = ( 1 + p x ) n = ( 1 + p x ) ( 1 / x p ) ⋅ x p n → e λ ( s − 1 ) (q+ps)^n=(1+p(s-1))^n:=(1+px)^n=(1+px)^{(1/xp)\cdot xpn}\to e^{\lambda(s-1)} (q+ps)n=(1+p(s1))n:=(1+px)n=(1+px)(1/xp)xpneλ(s1)
  2. 成功,总试验次数,几何, ( p s 1 − q s ) r (\frac{ps}{1-qs})^r (1qsps)r
  3. 丢5个色子。母函数 ( s + ⋯ + s 6 ) 5 / 6 5 (s+\cdots+s^6)^5/6^5 (s++s6)5/65. 注意为了求 s 15 s^{15} s15项系数,需要考虑二项式和负二项式展开
    ( 1 − s 6 ) 5 = 1 − 5 s 6 ⋯ − s 30 (1-s^6)^5=1-5s^6\cdots-s^{30} (1s6)5=15s6s30
    ( 1 − s ) − 5 = 1 + 5 s + C 6 2 s 2 + C 7 3 s 3 ⋯ (1-s)^{-5}=1+5s+C_6^2s^2+C_7^3s^3\cdots (1s)5=1+5s+C62s2+C73s3
  4. (相互独立) B ( 1 , p ) B(1,p) B(1,p) λ p \lambda p λp
  5. ∫ 0 ∞ e i t x λ r Γ ( r ) x r − 1 e − λ x d x = ∫ γ λ r y r − 1 e − y / Γ ( r ) d y ⋅ ( λ − i t ) − r = ( 1 − i t / λ ) − r \int_0^\infty e^{itx}\frac{\lambda^r}{\Gamma(r)}x^{r-1}e^{-\lambda x}dx=\int_\gamma \lambda^ry^{r-1}e^{-y}/\Gamma(r)dy\cdot(\lambda-it)^{-r}=(1-it/\lambda )^{-r} 0eitxΓ(r)λrxr1eλxdx=γλryr1ey/Γ(r)dy(λit)r=(1it/λ)r
    r = 1 , ( 1 − i t / λ ) − 1 r=1,(1-it/\lambda)^{-1} r=1,(1it/λ)1
    λ = 1 2 , r = n 2 , ( 1 − 2 i t ) − n 2 \lambda=\frac 12,r=\frac n2,(1-2it)^{-\frac n2} λ=21,r=2n,(12it)2n
  6. 后者分部积分(并特别注意密度的导数)。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值