机敏问答[概率][5] #20210619

这篇博客深入探讨了概率论中的Bernoulli试验场合的极限定理,包括依概率收敛、WLLN、几乎必然收敛等概念,并通过实例解释了De Moivre-Laplace中心极限定理。文章还讨论了弱大数定律、切比雪夫不等式及其在数据分析和随机变量收敛性证明中的应用。此外,内容涵盖了数据收集、分布和期望的收敛性质,以及在实际问题如集卡问题中的应用。
摘要由CSDN通过智能技术生成


本专栏主要作个人复习自测,有相关知识预备的同学也可作复习用。不保证无相应基础的人士能看明白。
万一考试考到了,或者对你的学习有较大帮助,一键三连不过分吧(斜眼笑)

Bernoulli试验场合极限定理

  1. 对于Bernoulli实验,什么是标准化后的(和) S n ∗ S_n^* Sn
  2. Bernoulli大数律:用()不等式估计 P ( ∣ S n − n p n ∣ ≥ ϵ ) ≤ P(|\frac{S_n-np}{n}|\ge\epsilon)\le P(nSnnpϵ)()。左边分母换成()时恰好就不能说明()(收敛种类)收敛了。
  3. De Moivre-Laplace中心极限定理:如何处理后的 S n S_n Sn满足什么分布?
  4. 解释 P ( S n = k ) p Z ( x k ) Δ x \frac{P(S_n=k)}{p_Z(x_k)\Delta x} pZ(xk)ΔxP(Sn=k) K \mathbb K K上一致收敛到1这个命题中各个字母含义。

答案

  1. S n − n p n p q \frac{S_n-np}{\sqrt{npq}} npq Snnp
  2. 切比雪夫, n − 2 ⋅ n v a r ( X ) ϵ 2 \frac{n^{-2}\cdot n var(X)}{\epsilon^2} ϵ2n2nvar(X) n \sqrt n n ,依概率
  3. 标准化,标准正态分布。
  4. S n ∼ B ( n , p ) , Z ∼ N ( 0 , 1 ) , x k = k − n p n p q , Δ x = x k + 1 − x k = 1 n p q S_n\sim B(n,p),Z\sim N(0,1),x_k=\frac{k-np}{\sqrt{npq}},\Delta x=x_{k+1}-x_k=\frac 1{\sqrt{npq}} SnB(n,p),ZN(0,1),xk=npq knp,Δx=xk+1xk=npq 1 K \mathbb K K是区间(不一定有限)

依概率收敛和WLLN

  1. 依概率收敛的本质思想:()时概率小,()时误差小。
  2. r r r阶收敛 ξ n → r ξ \xi_n\mathop\to\limits^r\xi ξnrξ:()(表达式)极限为0. 其中 r r r满足条件()
  3. 上面两种收敛是什么关系?(用到()不等式)其中不成立的一边和数学分析中不一致收敛的函数的积分有何关系?
  4. 弱大数律的结果是()(收敛种类)收敛,过程中(使用矩法证明时)用到了()(收敛种类)收敛。其中切比雪夫WLLN是两两()随机变量且所有随机变量满足条件:()。马尔可夫WLLN不需要独立性,也不考虑每个随机变量的()(数字特征),但是考虑()(随机变量)的()(数字特征)的渐近行为是()(填关于 n n n的量级)。
  5. 3.中所说收敛指的是()(表达式)依概率收敛到0. 如果需要 S n / n S_n/n Sn/n收敛到一个常数,我们额外需要的收敛性是(),这个收敛是什么意思?
  6. 用多项式逼近闭区间上连续函数:简单来说,每个点 x x x处的多项式函数值是以()为参数的()分布的概率值。
  7. ()收敛定理:几乎处处()(填条件)和()(收敛种类)收敛可以推出期望收敛。本质是分两段放缩(和数学分析哪里有类似处?)
  8. 截断情况推出 S n / n − E X 1 { ∣ X ∣ ≤ n } S_n/n-EX1_{\{|X|\le n\}} Sn/nEX1{ Xn}依概率收敛至0:充分条件是()(含有概率的表达式)关于 x → ∞ x\to\infty x极限趋于0. 则构造一列随机变量列(即构造”三角形“),截断的阈值依次(),且截断”造成影响“的概率趋于()。
  9. 7.中题设条件除了用于考察截断造成影响的概率,还在考察()的方差时作为被积函数(回忆阿贝尔变换)
  10. 7.中题设条件可以由 E ∣ X ∣ E|X| EX满足()推出,而7.中结论结合控制收敛定理就证明了 S n / n → P E X S_n/n\mathop\to\limits^PEX Sn/nPEX.
  11. 应用:水浒传 n n n将集卡问题。 根据几何分布,已经有 k k k将的卡时集下一张所需的抽取次数的期望在()(关于 n , k n,k n,k)量级,方差不超过()量级。(总需要抽取数)变量之和期望和方差渐近行为分别是()(关于 n n n)量级,其中特别注意()( n n n的函数)是()( n n n的函数)的平方的高阶小,于是再回忆4.,就得到集齐 n n n张卡所需的次数在 n n n趋于无穷时满足依概率收敛式()。
  12. 集齐一半卡需要抽取多少次?

答案

  1. 误差大,概率大
  2. E ∣ ξ n − ξ ∣ r E|\xi_n-\xi|^r Eξnξr > 0 >0 >0
  3. r r r阶收敛是依概率收敛的充分不必要条件。马尔可夫(或:切比雪夫)。可以用类似的反例(反例的本质也有类似之处)。
  4. 依概率, r r r阶,无关,方差一致有界,方差,和
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值