1. Damo-YOLO介绍
1.1 摘要: 在本报告中,我们提出了一种名为 DAMO-YOLO 的快速准确的目标检测方法,该方法比最先进的 YOLO 系列具有更高的性能。 DAMO-YOLO 在 YOLO 的基础上扩展了一些新技术,包括神经架构搜索(NAS)、高效的重参数化广义 FPN(RepGFPN)、具有 AlignedOTA 标签分配的轻量级头以及蒸馏增强。 特别是,我们使用 MAE-NAS(一种以最大熵原理为指导的方法)在低延迟和高性能的约束下搜索我们的检测主干,生成具有空间金字塔池化和焦点模块的类似 ResNet / CSP 的结构 。 在颈部和头部的设计上,我们遵循“大颈部,小头部”的规则。 我们导入具有加速皇后融合的 Generalized-FPN 来构建探测器颈部,并通过高效的层聚合网络 (ELAN) 和重新参数化升级其 CSPNet。 然后我们研究了探测器头部尺寸如何影响检测性能,并发现只有一个任务投影层的粗颈部会产生更好的结果。 此外,还提出了AlignedOTA来解决标签分配中的错位问题。 并引入了蒸馏模式以将性能提高到更高的水平。 基于这些新技术,我们构建了一套不同规模的模型,以满足不同场景的需求。 针对一