1\ stride 4 > stride 4+8+16+32+64, bs from 10 > 6, 多尺度训练速度慢, 两阶段耗时两者对比: 1d17h vs 2d6h
2\ 分割任务加stride=2做额外监督, 受显存限制, bs from 10 > 2, 太小了
3\ 分割指标离驾驶还有较大差距, 和驾驶那边的细节差异目前还缺乏一个完整的调研
4\ 多任务中, 各个检测单任务缺乏探索与调参(目前各个检测都共享一套超参)
5\ 缺乏前后帧缺数据集, 从可视化结果来看, 和2.5D任务一起训存在风险
6\ 前后帧方案缺乏探索, 目前的方案太naive
7\ 多任务训练调参策略缺乏探索, (各种任务的loss_weight + 各种超参数)
8\ 多任务模型的效率不高(BPU的利用率低, 带宽成本较大)
9\ 多任务freeze_bn阶段学习率设置策略缺乏探索
多任务一些难点 & 可做的点
最新推荐文章于 2025-04-07 19:54:34 发布