正交矩阵的转置就是它的逆矩阵

文章讨论了正交矩阵的定义,即矩阵与其转置相乘得单位矩阵。它强调了正交矩阵的逆等于其转置,并通过线性变换性质解释了如何使用正交矩阵和其逆对向量进行操作,结果表明w1与w3相等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正交矩阵的定义是:一个矩阵A与它的转置矩阵相乘的结果是一个单位矩阵,则该矩阵被称为一个正交矩阵。根据矩阵论中的定义,如果一个矩阵A与另一个矩阵B相乘的结果是单位矩阵E,那么我们可以说矩阵A是矩阵B的逆矩阵,或者矩阵B是矩阵A的逆矩阵。因此,正交矩阵的转置就是其逆矩阵。

先用正交矩阵A操作向量w1得到w2,再用A的逆矩阵操作w2得到w3,w1和w3是什么关系?

根据矩阵的线性变换性质,先用正交矩阵A操作向量w1得到w2,再用A的逆矩阵操作w2得到的结果应该是w1。这是因为矩阵的逆矩阵可以将一个向量从另一个向量中还原出来。因此,w1和w3应该是相等的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子燕若水

吹个大气球

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值