因此,旋转矩阵的迹在几何上与旋转角度的余弦相关。通过迹的值,可以推导出旋转角度的余弦,从而得到旋转的实际角度。这在计算机图形学、机器人学和物理学中都具有重要的应用,因为旋转角度是描述刚体运动和空间变换的关键参数。
因此,使用 torch.acos((\text{trace} - 1) / 2)
可以有效地从旋转矩阵的迹中提取出旋转角度 θθ。这个公式在计算机图形学、机器人学等领域广泛应用,用于从旋转矩阵中提取旋转角度。
因此,旋转矩阵的迹在几何上与旋转角度的余弦相关。通过迹的值,可以推导出旋转角度的余弦,从而得到旋转的实际角度。这在计算机图形学、机器人学和物理学中都具有重要的应用,因为旋转角度是描述刚体运动和空间变换的关键参数。
因此,使用 torch.acos((\text{trace} - 1) / 2)
可以有效地从旋转矩阵的迹中提取出旋转角度 θθ。这个公式在计算机图形学、机器人学等领域广泛应用,用于从旋转矩阵中提取旋转角度。