西门子S7-1200系列PLC输入/输出接线

西门子S7-1200是一款紧凑型、模块化的PLC,可完成简单逻辑控制、高级逻辑控制、HMI 和网络通信等任务。下面分享S7-1200系列PLC输入/输出接线图给大家。

CPU 1211C 接线图

CPU 1211C AC/DC/继电器 (6ES7 211-1BE40-0XB0)

① 24 VDC 传感器电源

② 对于漏型输入将负载连接到“-”端(如图示);对于源型输入将负载连接到“+”端

CPU 1211C DC/DC/继电器 (6ES7 211-1HE40-0XB0)

① 24 VDC 传感器电源

② 对于漏型输入将负载连接到“-”端(如图示);对于源型输入将负载连接到“+”端

CPU 1211C DC/DC/DC (6ES7 211-1AE40-0XB0)

① 24 VDC 传感器电源

② 对于漏型输入将负载连接到“-”端(如图示);对于源型输入将负载连接到“+”端

CPU 1212C 接线图

CPU 1212C AC/DC/继电器 (6ES7 212-1BE40-0XB0)

① 24 VDC 传感器电源

② 对于漏型输入将负载连接到“-”端(如图示);对于源型输入将负载连接到“+”端

CPU 1212C DC/DC/继电器 (6ES7 212-1HE40-0XB0)

① 24 VDC 传感器电源

② 对于漏型输入将负载连接到“-”端(如图示);对于源型输入将负载连接到“+”端

CPU 1212C DC/DC/DC (6ES7 212-1AE40-0XB0)

① 24 VDC 传感器电源

② 对于漏型输入将负载连接到“-”端(如图示);对于源型输入将负载连接到“+”端

CPU 1214C 接线图

CPU 1214C AC/DC/继电器 (6ES7 214-1BG40-0XB0)

① 24 VDC 传感器电源

② 对于漏型输入将负载连接到“-”端(如图示);对于源型输入将负载连接到“+”端

CPU 1214C DC/DC/继电器 (6ES7 214-1HG40-0XB0)

① 24 VDC 传感器电源

② 对于漏型输入将负载连接到“-”端(如图示);对于源型输入将负载连接到“+”端

CPU 1214C DC/DC/DC (6ES7 214-1AG40-0XB0)

① 24 VDC 传感器电源

② 对于漏型输入将负载连接到“-”端(如图示);对于源型输入将负载连接到“+”端

CPU 1215C 接线图

CPU 1215C AC/DC/继电器 (6ES7 215-1BG40-0XB0)

① 24 VDC 传感器电源

② 对于漏型输入将负载连接到“-”端(如图示);对于源型输入将负载连接到“+”端

CPU 1215C DC/DC/继电器 (6ES7 215-1HG40-0XB0)

① 24 VDC 传感器电源

② 对于漏型输入将负载连接到“-”端(如图示);对于源型输入将负载连接到“+”端

CPU 1215C DC/DC/DC (6ES7 215-1AG40-0XB0)

① 24 VDC 传感器电源

② 对于漏型输入将负载连接到“-”端(如图示);对于源型输入将负载连接到“+”端

CPU 1217C 接线图

CPU 1217C DC/DC/DC (6ES7 217-1AG40-0XB0)

① 24 VDC 传感器电源

② 对于漏型输入将负载连接到“-”端(如图示);对于源型输入将负载连接到“+”端

③ 5V差分信号输入

④ 5V差分信号输出

### 二维前缀和算法在瓦片图案生成或处理中的应用 #### 定义与基本原理 二维前缀和是一种用于快速求解矩形区域内元素总和的技术。对于给定的一个矩阵 `A`,可以先计算一个新的矩阵 `prefixSum`,其中每个元素 `(i,j)` 表示从原点 `(0,0)` 到当前坐标的子矩阵内所有数值之和。 通过这种方式,在后续查询任意指定区域内的元素累积值时只需常数时间复杂度 O(1),因为只需要访问四个处理过的节点即可完成加减运算得出结果[^1]。 #### 应用场景分析 当涉及到像地图服务这样的应用场景时——特别是采用分层切片机制的地图系统(如微软 Bing 地图),这种技术能够显著提升性能效率: - **加速渲染过程**:利用二维前缀和可以在瞬间获取特定范围内的数据汇总信息,从而加快图像合成速度; - **简化碰撞检测逻辑**:游戏开发等领域经常需要用到对象间相互作用判断,借助此方法可迅速定位目标区间并作出响应; - **优化路径规划算法**:无论是最短路还是其他形式的空间搜索问题,都能受益于高效的数据检索能力所带来的优势[^2]。 #### 实现案例展示 下面给出一段 Python 代码片段作为例子说明如何基于上述理论框架构建实际解决方案: ```python def build_prefix_sum(matrix): rows = len(matrix) cols = len(matrix[0]) if matrix else 0 prefix_sum = [[0]*(cols+1) for _ in range(rows+1)] for i in range(1,rows+1): for j in range(1,cols+1): prefix_sum[i][j]=matrix[i-1][j-1]+\ prefix_sum[i-1][j]+ \ prefix_sum[i][j-1]- \ prefix_sum[i-1][j-1] return prefix_sum def query_submatrix_sum(prefix_sum,x1,y1,x2,y2): """Query sum of elements within sub-matrix defined by top-left (x1,y1), bottom-right(x2,y2).""" return prefix_sum[x2+1][y2+1]-prefix_sum[x1][y2+1]-prefix_sum[x2+1][y1]+prefix_sum[x1][y1] # Example usage: input_matrix=[[3,0,1,4],[2,8,7,5],[4,6,9,1]] ps=build_prefix_sum(input_matrix) print(query_submatrix_sum(ps,1,1,2,2)) # Output should be 30 which is the sum inside this area. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值