漫步线性代数十二——网络

上篇文章举的例子是 3×4 矩阵,从理论角度来说它解决了我们要求的问题:计算四个子空间以及他们的维数 r,nr,r,mr 都是非零的。但是这个例子并是不是由实际应用产生的,它没有说明这些子空间本质是什么。

本篇文章介绍一类长方形矩阵,他们有两个优点,简单和重要。他们就是图的相关矩阵,每个元素都是1,-1或0,值得注意的还有四个子空间的基向量是相同的,这些子空间在网络理论中地位非常重要,我们需要强调一下,这里的图可不是函数图(像 y=x2 的抛物线图),这里的图是与计算机科学相关的而不是微积分里面的图,这里的更加容易解释。这里我们将会看到在长方形矩阵上进行一些操作,最后神奇般的变成了对称矩阵 ATA

图由点以及连接他们的边组成,图1中的图有4个点,5条边,在点1和4之间没有边(不允许自己连自己),这个图是有向图,因为每条边上都有箭头。


这里写图片描述
图1:有向图和它的相关矩阵

注意 A 的列,第3列给出了点3的信息——它告诉我们哪些边进来哪些边出去,边2 和3进,边5出。有时A也叫做连接矩阵或拓扑矩阵,当图有 m 条边n个点时, A m×n矩阵(通常情况下 m>n ),它的转置是点边相关矩阵。

四个基本子空间在这个图里都有意义,我们将他们写成电压和电流的形式。

A 的零空间:是否有一个列组合使得Ax=0?一般情况下这个答案需要先进行消元,但是这里能够立马看出来,所有列加起来等于一列零,零空间包含 x=(1,1,1,1) ,因为 Ax=0 , 方程 Ax=b 不存在唯一解(如果有解的话),任何常向量 x=(c,c,c,c) 都能够加起来等于 Ax=b 的特解,完整解存在一个任意常数 c (就像微积分中计算不定积分时候的+C)。

如果我们将 x1,x2,x3,x4 看做结点的电压,那就很有意义了, Ax 的五个元素给出了五条边的电压差,从第一行可以得到边1的差为 x2x1

对于方程 Ax=b ,给定差值 b1,,b5 ,如何找出 x1,,x4 ,但是这个无法做出来!我们可以加上常数 c 来提高或降低电压,差值是不会变得,因为x=(c,c,c,c) A 的零空间里。因为Ax=0意味着通过每条边的电压相等,碰巧这个矩阵的零空间是一维的,秩为 41=3

列空间:对于哪些 b1,,b5 ,我们可以求解 Ax=b 呢?现在回到矩阵上,行1加行3等于行2,右边需要满足 b1+b3=b2 或者无解,同样的,行3加行5等于行4,右边必须满足 b3+b5=b4 ,从消元的角度来说就是 0=0 。也就是说如果 b 在列空间里,那么

b1b2+b3=0andb3b4+b5=0(1)

继续这个过程会发现行1加行4等于行2加行5,但是不会产生新东西;(1)中的方程相减就能得到 b1+b4=b2+b5 。因为列空间维数是5-2,所以这五个元素有两个条件,虽然这些条件是来自消元过程,但是在图里面他们都是有意义的。

基尔霍夫电压定理表明:沿着闭合回路上的电压差相加一定等于零,在图1上面环中,差值满足 (x2x1)+(x3x2)=(x3x1) b1+b3=b2 ,对于下面的闭环需要 b3+b5=b4

18、对于 b 是否在列空间中,实际就是看是否符合基尔霍夫电压定理:闭环中电压差的和一定等于零。

左零空间:为了求解ATy=0,我们需要找出它在图中的意义,向量 y 有五个元素,分别代表每条边,这些数表示五条边上的电流。因为AT 4×5 ,所以方程 ATy=0 对着五个电流有四个条件,他们就是每个结点的守恒约束:每个结点流入的电流等于流出的电流:

ATy=0y1y2y1y3y2+y3y4y4y5+y5=0=0=0=0

这个网络理论的美妙之处就在于 A,AT 发挥着重要的角色。

求解 ATy=0 意味着找到一组电流集合,使得它不会堆积到任何一个结点上,流动必须是循环的,最简单的解就是一个小闭环里的电流,我们图中有两个环,假设每个闭环里有1安培的电流:

yT1=[11100]yT2=[00111]

每个闭环得到一个左零空间的向量 y ,元素+11表示方向与箭头一致还是相反, y1,y2 的所有组合充满了左零空间,所以 y1,y2 是一个基(维数肯定是 mr=53=2 )。事实上 y1y2=(1,1,0,1,1) 给出了图外围的大环。

列空间和左零空间关系比较紧密。左零空间包含 y1=(1,1,1,0,0) ,列空间满足 b1+b2+b3=0 ,那么 yTb=0 :列空间中的向量和左零空间中的向量是垂直的!

行空间: A 的行空间包含R4中的向量,但不是全部,它的维数是秩 r=3 ,消元过程将找到三个无关行,并且我们也能从图中看出来。前三行是相关的(行1加行3等于行2,这些边形成一个环),行1,2,4是无关的,因为边1,2,4无法形成环。

行1,2,4是行空间的基,每行元素加起来等于零,行空间的而所有组合 (f1,f2,f3,f4) 有下面的性质:

f:f1+f2+f3+f4=0x:x=c(1,1,1,1)(2)

这再次说明了基本定理:行空间垂直于零空间。如果 f 在行空间里,x在零空间里,那么 fTx=0

对于 AT ,网络理论的基本定律是基尔霍夫电流定律:每个结点的总流量等于零。数 f1,f2,f3,f4 是结点的电流源, f1 必须平衡 y1y2 ,也就是流出结点1的电流量。同其他三个结点同样如此,每秒的是 AT 时电流定律的右矩阵。

19、结点方程 ATy=f 表示基尔霍夫电流定律:网络中结点的流量等于零,也就是流出等于流入。

这个定理在外围的总电流是 f1+f2+f3+f4=0 是才满足,也就是 f=0 ,定律 ATy=0 是满足的。

生成树和无关行

左零空间中元素 y1,y2 是1或-1或0,零空间同样如此 x=(1,1,1,1) ,还有 PA=LDU 中的所有元素!关键点在于每个消元步骤在图中都是有意义的。

首先看矩阵 A 的第一步:行2减行1,我们可以用新边代替边2:消元步骤销毁了一条边,但产生了一条新边(图2),这里新边仅仅和之前的边3方向相反。下一步消元将在第三行得到零,这说明行1,2,3是相关的,如果对应的边包含一个环那他们就是相关的。

消元的最后一步我们得到r个无关行,这 r 个边形成一棵树——一个无环图。图中r=3,边1,2,4组成一个可能的树,全名叫生成树,因为树生成了图的所有结点,如果图相连的话,生成树有 n1 条边,在增加一条的话将产生回路。


这里写图片描述
图2

用线性代数的语言来说, n1 是矩阵 A 的秩,行空间的维数是n1,从消元中得到的生成树给出了行空间的一个基——树中的每条边对应基中的一行。

线性代数的基本定理连系上了子空间的维数:

  1. 零空间:维数为1,包含 x=(1,,1)
  2. 列空间:维数为 r=n1 ,任何 n1 列都是无关的。
  3. 行空间:维数为 r=n1 ,从任意生成树中得到无关行。
  4. 左零空间:维数为 mr=mn+1 ,包含环中的 y

这四行给出了欧拉公式,是拓扑学的第一个定理,它计算了零维的结点数减去一维的边数加上二维的环数,对任何连接图都有一个线性代数的证明:

++=(n)(m)+(mn+1)=1(3)

对于10个结点10条边的单环,欧拉数为10-10=1,如果这10个结点都连接到中心的第11个点,那么11-20+10依然是1。

行空间中的每个向量 f 满足xTf=f1++fn=0——外围的电流等于零,列空间中的每个向量满足 yTb=0 ——所有环的电压差加起来等于零,等会用欧姆定律将 x,y 联系起来。

网络

当给边分配数值 c1,,cm 时,图就变成了网络,数 ci 可以是边 i 的长度,也可以是容量,也可以是硬度或电导率等。这些数放到4×4的对角矩阵 C 中,C反映了物质属性,相比较矩阵 A ,它给出了连接信息。

我们这里用电导率进行描述,在边i上,电导率是 ci ,电阻是 1/ci ,欧姆定律表明流经电阻的电流 yi 和压降 ei 成比例:

yi=1/ciei

也可以写成 E=IR ,压降等于电流乘以电阻。一次考虑一个方程,那么欧姆定律就是 y=Ce

我们需要基尔霍夫电压定律和电流定律来完成整个框架:

  • KVL:每个环中的压降加起来等于零。
  • KCL:每个结点的电流 yi 加起来的零。

电压定律允许我们给每个结点分配势能 x1,,xn ,那么一个环中的电压差就类似于 (x2x1)+(x3x2)+(x1x3)=0 。电流定律告诉我们将结点的电流加起来,用矩阵表示就是 ATy ,如果没有额外的电流源,根据基尔霍夫定律可得 ATy=0

另一个方程是欧姆定律,但是我们需要找出通过电阻的压降。 Ax 给出了结点的压差,反转一下符号, Ax 给出了压降。降的部分是因为每条边上的电池强度 bi ,其余部分是通过电阻的 e=bAx

y=C(bAx)orC1y+Ax=b(4)

基本平衡方程结合了欧姆定律和基尔霍夫定律,它是应用数学的中心问题,这些方程几乎出现在任何地方:

C1yATy+Ax==bf(5)

这是一个线性对称系统,未知量是电流 y 和电压x,用矩阵的形式表示就是:

[C1ATA0][yx]=[bf](6)

对于块消元法,主元就是 C1 ,乘数因子就是 ATC ,执行消元得到:

[C10AATCA][yx]=[bfATCb]

最后一行的方程只包含 x

ATCAx=ATCbf(7)

将其回代到第一个方程得到 y

注意:势能必须提前确定:xn=0。第 n 个结点是接地的,所以原始矩阵的第n列会被移除,而在结果矩阵中它的 n1 列是无关的,方阵 ATCA n1 阶的可逆矩阵:


这里写图片描述
例1:假设电池 b3 和电流源 f2 连接四个结点,点4接地,势能固定为 x4=0 。第一件事是利是结点1,2,3电流定律 ATy=0

这里写图片描述
图3

y1y1y2+y3y2y3y5y4===0f20AT=110011101001100

结点4的方程没有写出来,根据电流定律方程为 y4+y5+f2=0 ,它可以由其余三个方程得到。

另一个方程是 C1y+Ay=b ,势能 x 根据欧姆定律与电流y连系起来,对角矩阵 C 包含五个电导率ci=1/Ri,右边包含一个电池的电量 b3 ,块的表达形式为 C1y+Ax=b


这里写图片描述
这个系统是 8×8 的,有五个电流和三个势能, y 的消元简化为3×3的系统 ATCAx=ATCbf ,矩阵 ATCA 包含 ci=1/Ri ,我们也给出了接地结点的行和列:

这里写图片描述
第一项是1+1+1或 c1+c3+c5 ,因为边1,3,5连接点1,下一个对角项是1+1或 c1+c2 ,这些边连接点2,对角线外的 c 都有个符号,接地结点4的边在第四行和第四列,为了使ATCA可逆,所以将它去掉。

注意 ATCA 是对称的,它的主元为正,来自于应用数学的基本框架,如图4所示:


这里写图片描述
图4

在力学中, x,y 表示位移和力。在流体中,未知量表示压力和流速。在统计学中, e 是误差,x是最佳最小二乘拟合。

对于应用数学的基本问题,除了知道问题的解以外,我们需要看到更多的东西,我们最开始求解线性方程,然后进一步建立所需的方程,数学和人类的贡献不在于计算而在于思考。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值