上篇文章举的例子是 3×4 矩阵,从理论角度来说它解决了我们要求的问题:计算四个子空间以及他们的维数 r,n−r,r,m−r 都是非零的。但是这个例子并是不是由实际应用产生的,它没有说明这些子空间本质是什么。
本篇文章介绍一类长方形矩阵,他们有两个优点,简单和重要。他们就是图的相关矩阵,每个元素都是1,-1或0,值得注意的还有四个子空间的基向量是相同的,这些子空间在网络理论中地位非常重要,我们需要强调一下,这里的图可不是函数图(像 y=x2 的抛物线图),这里的图是与计算机科学相关的而不是微积分里面的图,这里的更加容易解释。这里我们将会看到在长方形矩阵上进行一些操作,最后神奇般的变成了对称矩阵 ATA 。
图由点以及连接他们的边组成,图1中的图有4个点,5条边,在点1和4之间没有边(不允许自己连自己),这个图是有向图,因为每条边上都有箭头。
图1:有向图和它的相关矩阵
注意
A
的列,第3列给出了点3的信息——它告诉我们哪些边进来哪些边出去,边2 和3进,边5出。有时
四个基本子空间在这个图里都有意义,我们将他们写成电压和电流的形式。
A
的零空间:是否有一个列组合使得
如果我们将 x1,x2,x3,x4 看做结点的电压,那就很有意义了, Ax 的五个元素给出了五条边的电压差,从第一行可以得到边1的差为 x2−x1 。
对于方程
Ax=b
,给定差值
b1,…,b5
,如何找出
x1,…,x4
,但是这个无法做出来!我们可以加上常数
c
来提高或降低电压,差值是不会变得,因为
列空间:对于哪些
b1,…,b5
,我们可以求解
Ax=b
呢?现在回到矩阵上,行1加行3等于行2,右边需要满足
b1+b3=b2
或者无解,同样的,行3加行5等于行4,右边必须满足
b3+b5=b4
,从消元的角度来说就是
0=0
。也就是说如果
b
在列空间里,那么
继续这个过程会发现行1加行4等于行2加行5,但是不会产生新东西;(1)中的方程相减就能得到 b1+b4=b2+b5 。因为列空间维数是5-2,所以这五个元素有两个条件,虽然这些条件是来自消元过程,但是在图里面他们都是有意义的。
基尔霍夫电压定理表明:沿着闭合回路上的电压差相加一定等于零,在图1上面环中,差值满足 (x2−x1)+(x3−x2)=(x3−x1) , b1+b3=b2 ,对于下面的闭环需要 b3+b5=b4 。
18、对于 b 是否在列空间中,实际就是看是否符合基尔霍夫电压定理:闭环中电压差的和一定等于零。
左零空间:为了求解
这个网络理论的美妙之处就在于 A,AT 发挥着重要的角色。
求解
ATy=0
意味着找到一组电流集合,使得它不会堆积到任何一个结点上,流动必须是循环的,最简单的解就是一个小闭环里的电流,我们图中有两个环,假设每个闭环里有1安培的电流:
每个闭环得到一个左零空间的向量
y
,元素
列空间和左零空间关系比较紧密。左零空间包含 y1=(1,−1,1,0,0) ,列空间满足 b1+b2+b3=0 ,那么 yTb=0 :列空间中的向量和左零空间中的向量是垂直的!
行空间:
A
的行空间包含
行1,2,4是行空间的基,每行元素加起来等于零,行空间的而所有组合
(f1,f2,f3,f4)
有下面的性质:
这再次说明了基本定理:行空间垂直于零空间。如果
f
在行空间里,
对于 AT ,网络理论的基本定律是基尔霍夫电流定律:每个结点的总流量等于零。数 f1,f2,f3,f4 是结点的电流源, f1 必须平衡 −y1−y2 ,也就是流出结点1的电流量。同其他三个结点同样如此,每秒的是 AT 时电流定律的右矩阵。
19、结点方程 ATy=f 表示基尔霍夫电流定律:网络中结点的流量等于零,也就是流出等于流入。
这个定理在外围的总电流是 f1+f2+f3+f4=0 是才满足,也就是 f=0 ,定律 ATy=0 是满足的。
生成树和无关行
左零空间中元素 y1,y2 是1或-1或0,零空间同样如此 x=(1,1,1,1) ,还有 PA=LDU 中的所有元素!关键点在于每个消元步骤在图中都是有意义的。
首先看矩阵 A 的第一步:行2减行1,我们可以用新边代替边2:消元步骤销毁了一条边,但产生了一条新边(图2),这里新边仅仅和之前的边3方向相反。下一步消元将在第三行得到零,这说明行1,2,3是相关的,如果对应的边包含一个环那他们就是相关的。
消元的最后一步我们得到
图2
用线性代数的语言来说,
n−1
是矩阵
A
的秩,行空间的维数是
线性代数的基本定理连系上了子空间的维数:
- 零空间:维数为1,包含 x=(1,…,1) 。
- 列空间:维数为 r=n−1 ,任何 n−1 列都是无关的。
- 行空间:维数为 r=n−1 ,从任意生成树中得到无关行。
- 左零空间:维数为 m−r=m−n+1 ,包含环中的 y 。
这四行给出了欧拉公式,是拓扑学的第一个定理,它计算了零维的结点数减去一维的边数加上二维的环数,对任何连接图都有一个线性代数的证明:
对于10个结点10条边的单环,欧拉数为10-10=1,如果这10个结点都连接到中心的第11个点,那么11-20+10依然是1。
行空间中的每个向量
f
满足
网络
当给边分配数值
c1,…,cm
时,图就变成了网络,数
ci
可以是边
i
的长度,也可以是容量,也可以是硬度或电导率等。这些数放到
我们这里用电导率进行描述,在边
也可以写成 E=IR ,压降等于电流乘以电阻。一次考虑一个方程,那么欧姆定律就是 y=Ce 。
我们需要基尔霍夫电压定律和电流定律来完成整个框架:
- KVL:每个环中的压降加起来等于零。
- KCL:每个结点的电流 yi 加起来的零。
电压定律允许我们给每个结点分配势能 x1,…,xn ,那么一个环中的电压差就类似于 (x2−x1)+(x3−x2)+(x1−x3)=0 。电流定律告诉我们将结点的电流加起来,用矩阵表示就是 ATy ,如果没有额外的电流源,根据基尔霍夫定律可得 ATy=0 。
另一个方程是欧姆定律,但是我们需要找出通过电阻的压降。
Ax
给出了结点的压差,反转一下符号,
−Ax
给出了压降。降的部分是因为每条边上的电池强度
bi
,其余部分是通过电阻的
e=b−Ax
:
基本平衡方程结合了欧姆定律和基尔霍夫定律,它是应用数学的中心问题,这些方程几乎出现在任何地方:
这是一个线性对称系统,未知量是电流
y
和电压
对于块消元法,主元就是
C−1
,乘数因子就是
ATC
,执行消元得到:
最后一行的方程只包含
x
:
将其回代到第一个方程得到 y 。
注意:势能必须提前确定:
例1:假设电池 b3 和电流源 f2 连接四个结点,点4接地,势能固定为 x4=0 。第一件事是利是结点1,2,3电流定律 ATy=0 :
图3
结点4的方程没有写出来,根据电流定律方程为 y4+y5+f2=0 ,它可以由其余三个方程得到。
另一个方程是
C−1y+Ay=b
,势能
x
根据欧姆定律与电流
这个系统是 8×8 的,有五个电流和三个势能, y 的消元简化为
第一项是1+1+1或 c1+c3+c5 ,因为边1,3,5连接点1,下一个对角项是1+1或 c1+c2 ,这些边连接点2,对角线外的 c 都有个符号,接地结点4的边在第四行和第四列,为了使
注意
ATCA
是对称的,它的主元为正,来自于应用数学的基本框架,如图4所示:
图4
在力学中,
x,y
表示位移和力。在流体中,未知量表示压力和流速。在统计学中,
e
是误差,
对于应用数学的基本问题,除了知道问题的解以外,我们需要看到更多的东西,我们最开始求解线性方程,然后进一步建立所需的方程,数学和人类的贡献不在于计算而在于思考。