线性代数与图与网络

incidence matrix(关联矩阵)

考虑如下的图:




共四个节点(notes),五条边(edges),不妨赋予其一定的物理意义,如结点上的数值表示结点电势(potential),边即表示结点间的电势差(difference of potential)。
则可将该图转换为矩阵(关联矩阵)形式,矩阵的每一行表示一条边,每一列表示每一个结点,则矩阵的shape为 5×4
A=1,0,1,1,0,1,1,0,0,0,0,1,1,0,1,00011

我们看到结点1,2,3(1⇒ 2⇒ 3,与1⇒ 3)以及结点1,3,4(1⇒ 3⇒ 4,与1⇒ 4)均形成闭合回路(loop),loop对应于矩阵 A 的含义即是,三条边线性相关(同理,线性无关表示没有回路),也即A[1,:]+A[2,:]=A[3,:],A[3,:]+A[5,:]=A[4,:]

继续考察 A 的零空间,也即 Ax=0,x=[x1,x2,x3,x4]T,最终也即, c[1,1,1,1]T 构成零空间的一个基,零空间的维数为 dimN(A)=1 ,则由 dimN(A)=nrank(A) ,可知 rank(A)=41=3 ,据此可知 AT 的零空间 {y|ATy=0} ,此时的 dimN(AT)=mrank(A)=53=2

ATy=01,1,0,0,0,1,1,0,1,0,1,0,1,0,0,1,0011y1y2y3y4y5=0

我们将 y1,y2,y3,y4,y5 分别定义为各自边上的电势差, ATy=0 正是大名鼎鼎的 基尔霍夫定理(Kirchhoff’s circuit laws ,KCL)(某种意义上的守恒定理),写成方程组的形式为:
y1y3y4=0y1y2=0y2+y3y5=0y4+y5=0

我们可以清晰地看出,所谓的KCL(守恒定理)表示的是每一个结点的流入电流等于流出电流(电流在电路中流动,对每一个结点又不累积电荷)。
此时我们考虑 N(AT) 的一组基,其维数为2,则该组基中包含两个基向量,分别考虑两个环路(1⇒ 2⇒ 3⇐ 1,与1⇒ 3⇒ 4⇐ 1),也即:

11100,00111

如果考虑整个大的回路则得:

11011

在图理论中,没有环路的图称为树。

也即 rank(A)=3 ,消除环路之后的图(此时为树)为:



再来考察我们的维度公式:

dimN(AT)=mrank(A)=m(n1)

放在这里的含义即为, # nodes - # edges+ # loops=1 (这也就是著名的欧拉公式,也即我们用线性代数证明了欧拉公式,欧拉公式是任何图中都具有的拓扑性质)

e=Axy=Cef=ATyf=ATCAx

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值