【计算机视觉】Lecture 6:Harris 角点检测算子

动机:匹配问题

像立体视觉和运动估计这样的视觉任务需要在两个或多个视图中找到相应的特征点。
在这里插入图片描述

动机:块匹配

要匹配的元素是固定大小的图像块
在这里插入图片描述
任务:在第二个图像中找到最佳(最相似的)图像块

在这里插入图片描述

不是所有创造的图像块都是等价的!

在这里插入图片描述

直觉感受:因为它非常唯一独特(第二帧中只有一个图像块看起来相似),所以这是一个很好的匹配图像块。

在这里插入图片描述

不是所有创造的图像块都是等价的!

在这里插入图片描述

直觉感受:因为它不是非常唯一独特(在第二帧中有许多相似的图像块),所以这不是一个好的匹配图像块

在这里插入图片描述

什么是角点?

在这里插入图片描述
直觉地,轮廓的连接处
一般来说,更稳定的特征点不会受到观察点改变的影响
直觉地,像素点附近在各个方向上都存在大的变化
这样,它们就是用来作为匹配的很好的特征点!

角点:基本思想

我们应该通过观察一个小窗口内的灰度值来很容易地识别出这一点
任何方向移动窗口都会使外观发生很大变化

在这里插入图片描述

一个图像块附近的外观变化

在这里插入图片描述

Harris角点检测算子:基本思想

在这里插入图片描述

“平坦flat”区域:在各个方向上都没有变化

在这里插入图片描述

“边缘edge”:沿着边缘方向没有变化

在这里插入图片描述

“角点corner”:在各个方向都有显著的变化

Harris角点检测算子给出了一种确定哪种情况成立的数学方法。

Harris检测算子:数学描述

移动[u, v]这个像素值,来改变灰度值:

在这里插入图片描述

在这里插入图片描述

Harris检测算子:直观感受

移动[u, v]这个像素值,来改变灰度值:

在这里插入图片描述
上图蓝色圈圈部分:
对于灰度值几乎为常数的匹配块,这将接近于0。
对于非常独特唯一的匹配块,这将会是更大的。
因此,我们需要 E(u,v) 的值比较的匹配块。

二元函数的泰勒级数

一阶偏导数:

在这里插入图片描述

二阶偏导数:

在这里插入图片描述

三阶偏导数:

在这里插入图片描述
在这里插入图片描述

一阶近似值:
在这里插入图片描述

Harris角点推导

在这里插入图片描述

Harris检测算子:数学描述

针对小的移动[u, v],我们有双线性近似法:

在这里插入图片描述

其中M是通过计算图像导数获得的一个2*2矩阵

在这里插入图片描述

w(x, y)为窗口函数——计算加权和(最简单的情况,w=1)
注:IxIy 这些是梯度分量Ix, Iy的乘积

理解Harris的直观方法

将梯度向量视为一组(dx,dy)点,重心定义为(0,0)
通过散点矩阵将椭圆拟合到该点集
分析不同情况下的椭圆参数…

例子:案例和二元导数

在这里插入图片描述

将导数绘制为二维点

三种图像块类型中,关于x和y偏导数的分布是非常不同的

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

将椭圆拟合到每个点集

关于x和y偏导数的分布可以参数化为椭圆的形状和大小
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

通过特征值分类

使用矩阵M的特征值将图像像素点进行分类

在这里插入图片描述

角点响应测定

角点响应的测定:

在这里插入图片描述
在这里插入图片描述
K是一个经验值常数,一般是0.04-0.06

角点响应图

在这里插入图片描述

角点响应图

R 仅仅依赖于矩阵M的特征值
角点: R 很大且为正
边缘:R为大数值负数
平坦区域:|R| 很小

在这里插入图片描述

角点响应例子

在这里插入图片描述

Sobel算子计算Ix, Iy。窗口函数 w = 高斯函数,sigma = 1

在这里插入图片描述
阈值:R < -10000 (边缘edges)

在这里插入图片描述

阈值:R > 10000 (角点corners)

在这里插入图片描述

阈值:-10000 < R < 10000(既不是边缘edges也不是角点corners)

总结:Harris角点检测算法

  1. 计算图像关于x和y的偏导数(通过高斯导数算子):在这里插入图片描述

  2. 计算每个像素偏导数的乘积:在这里插入图片描述

  3. 计算每个像素偏导数乘积的和(高斯平滑滤波):在这里插入图片描述

  4. 定义对应每个像素的矩阵:在这里插入图片描述

  5. 计算每个像素的检测算子响应值:在这里插入图片描述

  6. 对R值设定阈值;计算非极大值抑制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值