数学微积分

之前写了概率论的学习笔记,今天决定写点微积分的内容。以前中学时一直觉得微积分这个名字很高大上,尤其对微分有种不明觉厉的感觉,后来上了大学真学了微积分才发现,其实微分和积分不是平级的概念,真正和积分平起平坐的是中学就学过的导数,积分和导数互为逆运算,它俩才是平级的。而微分真正的地位是什么呢?书中导数章节快要结束时才提了下微分的计算,说已知导数就能算出微分,当时看了感觉很画蛇添足又无足轻重,让人觉得微分的地位简直对不起微积分这个名字。我也曾对它们的本质感兴趣,不过最终也仅限于考试没有深究。

毕业后读了不少别人的文章与书籍,才知道原来微积分最早是从微分来的,因为不够严谨在创立200年后被用极限定义的微积分取代,这才有了我们现在学的微积分,曾经迷惑的我渐渐明白了前因后果也对微积分有了更多兴趣,于是从源流和历史的角度重新学习了下微积分的由来,于是也自己写了些笔记,篇幅有限就把基本内容写成了这篇文章。

1、积分的由来

积分的思想最初来自于割圆法,即用近似方法求出圆的面积。圆可以划分出若干个全等三角形,而三角形的面积公式是已知的,所以求出每个三角形的面积,加在一起,就可近似得出圆的面积。设划分数量为 ,三角形高为 ,底边长 [公式] ,则近似面积 [公式]

 

 

如图所示,当三角形数量较少时所得面积与圆面积差距较大,但随着划分的三角形数量增加,近似程度逐渐升高,得出的面积越来越近似于圆真正的面积。三角形的高也越来越接近圆的半径,底片也趋于和对应弧长重合。

所以分割数量足够多,多到三角形的高与圆的半径长度差距可以忽略不计,三角形底边与三角形弧长的差距也可忽略不计,那么高 等于圆半径 ,底边长根据圆周长公式为 [公式] ,所以面积 [公式] ,而结果 [公式] 正是圆面积公式。

 

 

2、求积分

这种思想在圆面积上的应用是成功的,而当解析几何出现后,我们同样也可以把这种方法应用在坐标系中的函数曲线上,例如求抛物线函数 从坐标轴0点到 [公式] 点处的面积,跟圆形近似成三角形累加一样,现在我们把这个面积近似成长方形累加起来。

 

还是同样的方法除以一个足够大的数n,那么每个长方形的底边就被均分成 ,而长方形的高则是对应位置的 [公式] 代入函数得到的 [公式] 值,由于是均分所以每次 [公式] 值累加一倍,代入函数后 [公式] 依次为 [公式] ,所以面积所以小四边形累加的和为: [公式] 提取公因式并化简后为 [公式] 继续进行数列求和为 [公式] 由于n足够大所以分母带n的数可视为0,最后我们得到答案面积为 [公式] ,如果不代入坐标 [公式] 那就是 [公式] ,也正是抛物线函数 [公式] 求积分所得原函数,这就是积分的由来!对一个曲线函数求在具体距离上围成的就是定积分,而如果你不把数带进去,得到的就是个关于面积的函数,它也是已知导函数求它的原函数。(当然这里还有点不严谨,应该带个常数C)

 

 

最后说一下积分书写格式,因为用这种思想解决问题都需要除以一个相当于无穷大的数 来获得一个相当于无穷小的底边,但圆的无穷小底边和抛物线问题的无穷小底边表达式不一样,所以统一用符号 [公式] 表示,而 [公式] 则拉成变成了积分的专有符号 [公式] ,刚才问题中抛物线 [公式] 围成面积在x轴上是从0到 [公式] ,所以标准写法就是 [公式] ,不代入任何数字则是不定积分 [公式] (前面提到的常数C,因为 [公式] 加任何常数求导都还是 [公式]

 

3、古典微积分中的导数

说完了积分,接着说说和它互为逆运算的导数(即求导),积分来自几何中的面积问题,而导数也源于几何,来自于切线斜率这一问题。

直接求经过曲线上一点的直线(切线)的斜率无从下手,但如果求过两个点的直线(割线)斜率,则可用三角函数解决。以割线与曲线的两个交点作直角三角形,三角形的对边除以邻边,可得三角函数中的正切值,正是这条直线的斜率。

如图所示,两交点连线所成直角三角形中,用蓝色标出的角的正切值即为斜率。正切=对边/邻边,分别设邻边、对边为 ,则正切为 [公式] 。两条边长等于坐标的差值,例如交点坐标是点 [公式][公式] ,则邻边是[公式] 对边是 [公式],斜率值即 [公式] ,由于y是由x代入函数所得,所以也能写成 [公式]

 

 

 

割线的斜率已经知道了,但我们想要的是切线斜率,这时候我们发现,如果让直线与曲线的两个交点离得近一些,这条割线也就更近似于切线,斜率也更接近切线的斜率。如图所示割线的另一个交点与想求切线的点 [公式] 越近,则跟过该点 [公式] 的切线的近似程度越高。

 

例如求与函数[公式] 点上切线斜率相近似的割线斜率, [公式] 外另一个交点为 [公式] 的割线,肯定比另一个交点为 [公式] 的割线近似程度更高。

 

既然割线的两个点越近,近似于切线的程度也越高,就越接近我们的目标。那干脆让割线的两个交点重合,直接变成切点,可以吗?想法很好,但从图中可以看出,随两个点越来越近,这个过程中三角形越来越小,边长[公式] 自然也越来越小,如果另一个交点真的和切点重合,那就没有边长,没有边长也就更没有正切了。

 

所以[公式] 不能没有,但又要小到可以忽略,于是现在就称 [公式][公式] 为无穷小,这就是微分!无穷小即是古典微积分中微分的定义。(回顾类比之前讲过的积分,积分中dx也是无穷小,不过是另一种无穷小----底边的无穷小)

 

现在回到求曲线函数 或者叫 [公式] 在点 [公式] 上的切线斜率问题上来,邻边 [公式] 现在是无穷小,而对边 [公式][公式][公式] 的差值,y值要靠代入x计算得出,于是就把含有无穷小的x值代入原函数,得 [公式] ,展开后得 [公式] ,减去抵消的项最后得到带着微分dx的对边变成长 [公式]

 

现在再用 ,代入后得那么 [公式] ,将微分dx上下约去后得 [公式],dx是无穷小可以忽略,所以把dx省去最终得到 [公式],把推导过程从头到尾连续写出来则如下图所示:

 

如果把曲线上点 的坐标代入,那么得到的就是过该点切线的斜率,如果不代入,那么得到的就是 [公式]这个关于该曲线所有点切线斜率的函数,这就是导数!

 

以上写成标准形式即

 

综上所述,古典微积分用斜率定义了导数,又利用无穷小也就是微分求出了斜率。这个过程很直观但存在一个严重的问题,就是无穷小一会被当成0省去一会又被当成非0数用除法约去,虽然我们能用这个方法获得导数,但无法解释的无穷小对数学的严格性造成了挑战,这个问题在微积分诞生后200年才获得了解决,那就是建立在极限基础上的现代微积分。

 

4、用极限定义的现代微积分

极限的定义是一种变化趋势。可以用符号 表示,字母lim表示求极限,lim右侧是求极限的对象(可以是函数等),lim下方的存在变化趋势的具体内容,变化内容一般是函数x轴取值,也可以是其他量。

 

用极限定义现代微积分写成 这一形式。这个极限的变化量是邻边边长也就是原来的 [公式] ,之前邻边长 [公式] 代表的是无穷小也就是微分,但现在仅仅是一个变化量用 [公式] 表示。剩下的步骤和之前一样,只是最后一步时 [公式] 取极限趋近于0全部消去。所以实际上现代微积分是用极限这个概念规避了无穷小的麻烦,之前所有步骤邻边长都是一个非0的数自然可以约去,只是最后一步求极限趋于0消去了。

 

这样在推导过程用不到无穷小,一会是0一会非0的麻烦也就避开了,不过我们虽然没有了无穷小的麻烦,微分这个原本是微积分起点的概念也连带没有了。现在微分已经没必要求了,但想再表示微分也不是不行,以前是先有微分再求导数,现在直接有了导数也可以再求微分,已知导数后再乘以变化量就可以求出微分,不过这个微分的定义就成了变化的具体数值,跟原来不一样了,这也就是书中导数章节末尾最后那一点微分内容的由来,算是历史的孑遗吧。

其实极限作为单独一门学科,内容与应用还有许多,不过这里仅说了重新定义求导方式这一件事,有兴趣可以再多看看其他的。

用极限求函数的导数过程示意

5、对本质的理解

最后回到回到微积分的核心“导数”和“积分”上来,它们的本质究竟是什么,你可能会想前面不都已经说了导数是斜率,但斜率只是导数的几何意义。几何意义并不是本质,只是一种实际意义,意义可以是几何意义,也可以是物理意义。莱布尼茨发现微积分是用的斜率,而在牛顿那里则是通过瞬时变化率,这两者都是导数的意义。

我认为更基本的说是它们都是运算,只不过是一种特殊的运算,导数是一种特殊的求商,积分是一种特殊的求积,特殊在乘除的数不是普通的数,而是无穷小。积分的 符号和阶乘的 [公式] 号、取对数的 [公式] 符号一样都是运算,但即使有复杂或特殊性它们也都是在基本乘除运算的基础上建立的,微积分的特殊在包含了无穷小,当然这是从古典微积分的角度说的,如果从现代的角度,那么导数和积分无疑都是极限,而极限某种程度上也可看作一种运算。

 

运算本身是没有意义的,但联系现实赋予了它们意义。就像阶乘的 说白了只是一个递归形式的乘法运算,但在排列组合中的应用赋予了它现实意义。微积分解决了很多诸如斜率、面积等没法直接解决的问题,同时带来了很多好用的性质可以研究最值、单调性等等,从17世纪的弹道学到各种领域广泛改变了人们的生活,我想就都它对我们的意义吧。

 

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangchuang2017

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值