扩散模型
扩散模型(diffusion model)是一类生成模型,运用了物理热力学扩散思想,主要用于对复杂数据分布进行建模和采样。以图片生成举例简要介绍下扩散模型运作方法。给定目标分布q(x)中的一些观测数据x,生成模型的目标是学习一个生成过程,从q(x)产生新样本。通过注入高斯噪声逐步扰动观测数据,然后应用 一个可学习的转换核心进行逆过程以恢复数据。
在概念上,其实就像是米开朗基罗说的:“塑像就在石头里,我只是把不需要的部分去掉”,扩散模型做的事情是相同的。目前扩散模型已经在时间序列的预测、插值和生成任务中崭露头角,本文总结和ICLR2024五篇扩散模型和时序任务结合的文章。
1
Diffusion-TS
论文标题:DIFFUSION-TS: INTERPRETABLE DIFFUSION FOR GENERAL TIME SERIES GENERATION(ICLR2024)
论文提出Diffusion-TS,利用带有解耦时间表示的编码器-解码器Transformer,生成高质量的多变量时间序列样本。在这个框架中,论文采用一种分解技术,使Diffusion-TS能够捕捉到时间序列的语义含义,而Transformer则负责从带有噪声的模型输入中深入挖掘详细的序列信息。与现有的方法不同,作者训练模型在每个扩散