前言
之前写了两篇A*算法的实现文章:A*算法(一)——简单实现,实现了最简单直接的路径规划;A*算法(二)——最小堆实现,使用最小堆管理OpenList,效率提高很多。但是对于特定的简单情景,还有更快的实现方式。
双OpenList实现方法
前文提到:A*算法是一种启发式的路径搜索算法。对于地图中的每一个节点,我们记录起点到该节点的消耗g,估算该节点到终点的消耗h(并不是准确值,有多种估算方法,简单的比如欧氏距离),记两者之和f=g+h。
对于这样的情景:
①路径只能沿着上下左右的方向,不能通过斜向前进;
②对于H的估计使用曼哈顿距离(http://blog.csdn.net/tianlan_sharon/article/details/50904641)。
可以想到:
如果OpenList中最小的 F 值为 Fmin ,那么OpenList中节点的 F 值只可能是 Fmin 和 Fmin+2 。
所以:
如果分别建立两个OpenList,一个存储了 Fmin 的节点,另一个存储 Fmin+2 的节点,那么想OpenList中添加、删除节点时间复杂度为O(1),从OpenList中找出最小 F 值节点时间复杂度为O(1),整体的复杂度非常小了。
部分代码
向OpenList添加节点
void AStar::addNodeToOpenList(ListNode * node)
{
if (node->F == iFOpenList1)
{
pOpenList1.push_back(node);
return;
}
else if (node->F == iFOpenList2)
{
pOpenList2.push_back(node);
return;
}
if (node->F != iFOpenList1 && pOpenList1.size() == 0)
{
iFOpenList1 = node->F;
pOpenList1.push_back(node);
return;
}
if (node->F != iFOpenList2 && pOpenList2.size() == 0)
{
iFOpenList2 = node->F;
pOpenList2.push_back(node);
return;
}
std::cout << __FILE__ << "出现了不符合加入OpenList规则的节点,不正确:第" << __LINE__ << "行" << std::endl;
}
从OpenList中选出 F 值最小的节点
ListNode * AStar::findLeastFInOpenList()
{
if ((iFOpenList1 < iFOpenList2 || iFOpenList2 == -1) && !pOpenList1.size() == 0)
{
ListNode* pNode = pOpenList1.back();
pOpenList1.pop_back();
if (pOpenList1.size() == 0)
iFOpenList1 = -1;
return pNode;
}
if ((iFOpenList2 < iFOpenList1 || iFOpenList1 == -1) && !pOpenList2.size() == 0)
{
ListNode* pNode = pOpenList2.back();
pOpenList2.pop_back();
if (pOpenList2.size() == 0)
{
iFOpenList2 = -1;
}
return pNode;
}
std::cout << __FILE__ << "无法找到OpenList中F值最小的节点,不正确:第" << __LINE__ << "行" << std::endl;
}
效率及缺点
在测试中,楼主是12年的笔记本,CPU为Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz,在分辨率100*100的地图中,找到12412条路径,用时大概在12秒左右。
缺点:
要保证OpenList中节点的F值只能是有限种类,且不能太多。这就限制了路径只能沿着上下左右,对 H 的估计不能出现小数。