【附优化方法的ICP源码】ICP与NDT匹配算法精度对比,以及手动实现的ICP和基于优化方法的ICP精度对比

本文对比了ICP与NDT两种点云匹配算法的精度,使用KITTI00数据集,在相同实验条件下进行了测试。结果显示,在SLAM里程计应用中,NDT的匹配精度优于ICP。此外,还提供了自行实现的ICP算法及其优化方法。

补充内容(2021年3月31号)

很多朋友给我留言想要源代码,但是最近实在太忙不能一一回复,实在是抱歉!

由于,这个项目的代码有别的用处,所以不能全部公开给大家,但是我把关于ICP的部分整理出来了,上传在github上了,你可以去下载,里面是我通过优化的方法实现的ICP算法,其迭代方法是高斯牛顿。

代码我上传了github上了,如需下载请点这里:源码在此(记得给我点Star哈,哈哈)

关于优化方法的ICP具体推导过程,我就不在此展示了,给出一个推导结果,大家直接对照代码看,很容易理解。

公式推导如下:
f = m i n E ( R , t ) = m i n 1 N y ∑ ∥ R y i + t − x i ∥ (0) f = min E(R,t) = min\frac{1}{N_y} \sum\|Ry_i +t -x_i \| \tag0 f=minE(R,t)=minNy1Ryi+

评论 51
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值