计算机视觉与深度学习 | 点云配准算法综述(1992-2025)

#王者杯·14天创作挑战营·第1期#

点云配准算法综述(1992-2025)

点云配准

  • 点云配准算法综述(1992-2025)
  • 一、传统方法(1992-2020)
    • 1. **ICP(Iterative Closest Point)**
    • 2. **NDT(Normal Distributions Transform)**
    • 3. **4PCS(4-Points Congruent Sets)**
  • 二、深度学习驱动的方法(2018-2025)
    • 1. **PointNetLK**
    • 2. **DCP(Deep Closest Point)**
    • 3. **GeoTransformer**
    • 4. **混合方法(如FCGF、PREDATOR)**
  • 三、高效优化方法(2020-2025)
    • 1. **VGICP(Voxelized GICP)**
    • 2. **Cofinet与**
  • 四、未来趋势(2025年方向)
  • 五、代码示例
    • 1. **ICP精配准(PCL库)**
    • 2. **4PCS粗配准(Open3D)**
    • 3. **VGICP(2025年新方法)**
    • 4. **FPFH特征提取(Open3D)**
  • 六、算法对比与选择
  • 七、未来趋势(2025年方向)
  • 八、参考文献

点云配准是三维视觉中的核心任务,旨在通过求解刚性变换(旋转、平移)将不同视角或时间采集的点云对齐到同一坐标系。其应用涵盖三维重建、自动驾驶、机器人导航等领域。以下从算法分类、原理、公式及代码实现角度展开。


一、传统方法(1992-2020)

1. ICP(Iterative Closest Point)

  • 提出时间:1992年
  • 原理:通过迭代搜索最近点,利用SVD分解估计变换矩阵,最小化点对欧氏距离。
  • 公式:目标函数为最小化误差:
    E =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单北斗SLAMer

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值