点云配准算法综述(1992-2025)
点云配准
- 点云配准算法综述(1992-2025)
- 一、传统方法(1992-2020)
-
- 1. **ICP(Iterative Closest Point)**
- 2. **NDT(Normal Distributions Transform)**
- 3. **4PCS(4-Points Congruent Sets)**
- 二、深度学习驱动的方法(2018-2025)
-
- 1. **PointNetLK**
- 2. **DCP(Deep Closest Point)**
- 3. **GeoTransformer**
- 4. **混合方法(如FCGF、PREDATOR)**
- 三、高效优化方法(2020-2025)
-
- 1. **VGICP(Voxelized GICP)**
- 2. **Cofinet与**
- 四、未来趋势(2025年方向)
- 五、代码示例
-
- 1. **ICP精配准(PCL库)**
- 2. **4PCS粗配准(Open3D)**
- 3. **VGICP(2025年新方法)**
- 4. **FPFH特征提取(Open3D)**
- 六、算法对比与选择
- 七、未来趋势(2025年方向)
- 八、参考文献
点云配准是三维视觉中的核心任务,旨在通过求解刚性变换(旋转、平移)将不同视角或时间采集的点云对齐到同一坐标系。其应用涵盖三维重建、自动驾驶、机器人导航等领域。以下从算法分类、原理、公式及代码实现角度展开。
一、传统方法(1992-2020)
1. ICP(Iterative Closest Point)
- 提出时间:1992年
- 原理:通过迭代搜索最近点,利用SVD分解估计变换矩阵,最小化点对欧氏距离。
- 公式:目标函数为最小化误差:
E =