鱼鹰优化算法(Osprey Optimization Algorithm, OOA)
- 一、全局-局部搜索框架
- 二、算法原理与公式推导
-
- 1. 全局勘探阶段(定位与捕鱼)
- 2. 局部开发阶段(移动猎物)
- 3. 适应度更新规则
- 三、代码实现(Python示例)
- 四、改进方向与应用场景
- 五、性能对比与实测
- 六、参考文献
以下是关于鱼鹰优化算法(Osprey Optimization Algorithm, OOA)的全局-局部搜索框架、原理、公式及代码实现的详细解析:
一、全局-局部搜索框架
鱼鹰算法(OOA)的优化过程分为两个阶段,分别对应全局勘探(Global Exploration)和局部开发(Local Exploitation),模拟鱼鹰捕鱼的两个自然行为:
- 全局勘探:鱼鹰在空中发现鱼群位置并俯冲攻击,对应算法在解空间中广泛搜索最优区域。
- 局部开发:鱼鹰将捕获的鱼带到安全位置食用,对应算法在局部范围内精细化搜索,提升收敛精度。
该框架通过动态平衡探索与开发能力,避免陷入局部最优并提高收敛速度。
二、算法原理与公式推导
1. 全局勘探阶段(定位与捕鱼)
- 行为模拟:鱼鹰随机选择一个目标鱼群位置并攻击,位置更新公式为: