两个服从Gamma分布的随机变量的和的pdf和cdf

两个服从Gamma分布的随机变量的和的pdf和cdf

随机变量 X X X服从参数 ( α , β ) (\alpha,\beta) (α,β)​的Gamma分布,则其概率密度函数(pdf)可以表示为
f ( x ) = β α Γ ( α ) x α − 1 e − β x , ( x > 0 ) (1) f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x},(x > 0)\tag{1} f(x)=Γ(α)βαxα1eβx,(x>0)(1)
其对应的矩母函数为 M x ( t ) = ( 1 + t / β ) − α {\rm M}_x(t)=(1+t/\beta)^{-\alpha} Mx(t)=(1+t/β)α​​​,所以若 X 1 ∽ G ( α 1 , β 1 ) , X 2 ∽ G ( α 2 , β 2 ) , X = X 1 + X 2 X_1 \backsim G(\alpha_1,\beta_1),X_2 \backsim G(\alpha_2,\beta_2),X=X_1+X_2 X1G(α1,β1),X2G(α2,β2),X=X1+X2​​​,且 β 1 = β 2 = β \beta_1=\beta_2=\beta β1=β2=β,则由矩母函数可以很容易得到 M x ( t ) = M x 1 ( t ) M x 2 ( t ) = ( 1 + t / β ) − ( α 1 + α 2 ) {\rm M}_x(t)={\rm M}_{x_1}(t){\rm M}_{x_2}(t)=(1+t/\beta)^{-(\alpha_1+\alpha_2)} Mx(t)=Mx1(t)Mx2(t)=(1+t/β)(α1+α2),所以 X ∽ G ( α 1 + α 2 , β ) X \backsim G(\alpha_1+\alpha_2,\beta) XG(α1+α2,β)​​​,该性质称为Gamma分布的可加性,其更具体的推导过程可以查看《​​​不同方法推导Gamma分布可加性产生的矛盾》。对于更一般的情况,即两个随机变量服从参数不同的Gamma分布,则这两个随机变量和的随机变量的矩母函数可以表示 M x ( t ) = M x 1 ( t ) M x 2 ( t ) = ( 1 + t / β 1 ) − α 1 ( 1 + t / β 2 ) − α 2 {\rm M}_x(t)={\rm M}_{x_1}(t){\rm M}_{x_2}(t)=(1+t/\beta_1)^{-\alpha_1}(1+t/\beta_2)^{-\alpha_2} Mx(t)=Mx1(t)Mx2(t)=(1+t/β1)α1(1+t/β2)α2,此时不再服从上述可加性性质。本文将就上述 α 1 , α 2 ∈ Z + \alpha_1,\alpha_2 \in \Bbb Z^+ α1,α2Z+情况下的两个Gamma分布随机变量的和的pdf和cdf进行推导。

根据概率论相关知识,我们知道,两个随机变量的和的pdf等于各自pdf的卷积,因此
f x ( x ) = ∫ − ∞ ∞ f x 1 ( y ) f x 2 ( x − y ) d y (2) \begin{equation} \begin{aligned} f_x(x)=\int_{-\infty}^\infty f_{x_1}(y)f_{x_2}(x-y)dy \end{aligned} \end{equation}\tag{2} fx(x)=fx1(y)fx2(xy)dy(2)
易知,仅当 y > 0 , x − y > 0 y>0,x-y>0 y>0,xy>0​,即 y > 0 , y < x y>0,y<x y>0,y<x时,上述积分的被积函数不等于0,将相关表达式带入(2)可以得到
f x ( x ) = β 1 α 1 β 2 α 2 Γ ( α 1 ) Γ ( α 2 ) ∫ 0 x y α 1 − 1 e − β 1 y ( x − y ) α 2 − 1 e − β 2 ( x − y ) d y = β 1 α 1 β 2 α 2 Γ ( α 1 ) Γ ( α 2 ) e − β 2 x ∫ 0 x y α 1 − 1 ( x − y ) α 2 − 1 e − ( β 1 − β 2 ) y d y (3) \begin{equation} \begin{aligned} f_x(x)&=\frac{\beta_1^{\alpha_1}\beta_2^{\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^x y^{\alpha_1-1}e^{-\beta_1 y}(x-y)^{\alpha_2-1}e^{-\beta_2(x-y)}dy\\ &=\frac{\beta_1^{\alpha_1}\beta_2^{\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} e^{-\beta_2 x} \int_0^x y^{\alpha_1-1}(x-y)^{\alpha_2-1}e^{-(\beta_1-\beta_2)y}dy \end{aligned} \end{equation}\tag{3} fx(x)=Γ(α1)Γ(α2)β1α1β2α20xyα11eβ1y(xy)α21eβ2(xy)dy=Γ(α1)Γ(α2)β1α1β2α2eβ2x0xyα11(xy)α21e(β1β2)ydy(3)
由二项展开定理有: ( x − y ) α 2 − 1 = ∑ i = 0 α 2 − 1 ( − 1 ) α 2 − 1 − i ( α 2 − 1 i ) x i y α 2 − 1 − i (x-y)^{\alpha_2-1}=\sum_{i=0}^{\alpha_2-1}(-1)^{\alpha_2-1-i} \begin{pmatrix}\alpha_2-1\\ i\end{pmatrix}x^i y^{\alpha_2-1-i} (xy)α21=i=0α21(1)α21i(α21i)xiyα21i,将其代入(3)并化简有
f x ( x ) = β 1 α 1 β 2 α 2 Γ ( α 1 ) Γ ( α 2 ) e − β 2 x ∑ i = 0 α 2 − 1 ( − 1 ) α 2 − 1 − i ( α 2 − 1 i ) x i ∫ 0 x y α 1 + α 2 − i − 2 e − ( β 1 − β 2 ) d y (4) \begin{equation} \begin{aligned} f_x(x)&=\frac{\beta_1^{\alpha_1}\beta_2^{\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} e^{-\beta_2 x} \sum_{i=0}^{\alpha_2-1}(-1)^{\alpha_2-1-i} \begin{pmatrix}\alpha_2-1\\ i\end{pmatrix}x^i \int_0^x y^{\alpha_1+\alpha_2-i-2}e^{-(\beta_1-\beta_2)}dy \end{aligned} \end{equation}\tag{4} fx(x)=Γ(α1)Γ(α2)β1α1β2α2eβ2xi=0α21(1)α21i(α21i)xi0xyα1+α2i2e(β1β2)dy(4)
上述积分式的求导,需要用到下面的定理[1]:
∫ 0 μ x m e − t x d x = m ! t − ( m + 1 ) [ 1 − ∑ k = 0 m t k k ! μ k e − t μ ] μ → ∞ → ∫ 0 μ x m e − t x d x = m ! t − ( m + 1 ) (5) \begin{equation} \begin{aligned} \int_0^\mu{x^m e^{-tx}dx}=m!t^{-(m+1)}[1-\sum_{k=0}^m{\frac{t^k}{k!} \mu^k e^{-t\mu}}] \quad\underrightarrow{\mu \rightarrow \infty} \quad \int_0^\mu{x^m e^{-tx}dx}=m!t^{-(m+1)} \end{aligned} \end{equation}\tag{5} 0μxmetxdx=m!t(m+1)[1k=0mk!tkμketμ] μ0μxmetxdx=m!t(m+1)(5)
所以
∫ 0 x y α 1 + α 2 − i − 2 e − ( β 1 − β 2 ) d y = ( α 1 + α 2 − i − 2 ) ! ( β 1 − β 2 ) − ( α 1 + α 2 − i − 1 ) [ 1 − ∑ k = 0 α 1 + α 2 − i − 2 ( β 1 − β 2 ) k k ! x k e − ( β 1 − β 2 ) x ] (6) \int_0^x y^{\alpha_1+\alpha_2-i-2}e^{-(\beta_1-\beta_2)}dy=(\alpha_1+\alpha_2-i-2)!(\beta_1-\beta_2)^{-(\alpha_1+\alpha_2-i-1)}[1-\sum_{k=0}^{\alpha_1+\alpha_2-i-2}{\frac{(\beta_1-\beta_2)^k}{k!} x^k e^{-(\beta_1-\beta_2) x}}]\tag{6} 0xyα1+α2i2e(β1β2)dy=(α1+α2i2)!(β1β2)(α1+α2i1)[1k=0α1+α2i2k!(β1β2)kxke(β1β2)x](6)
将(6)代入(4)整理得到
f x ( x ) = A 0 ∑ i = 0 α 2 − 1 A 1 ( i ) [ x i e − β 2 x − ∑ k = 0 α 1 + α 2 − i − 2 ( β 1 − β 2 ) k k ! x k + i e − β 1 x ] (7) \begin{equation} \begin{aligned} f_x(x)=A_0\sum_{i=0}^{\alpha_2-1}A_1(i)[x^i e^{-\beta_2 x}-\sum_{k=0}^{\alpha_1+\alpha_2-i-2}{\frac{(\beta_1-\beta_2)^k}{k!} x^{k+i} e^{-\beta_1 x}}] \end{aligned} \end{equation}\tag{7} fx(x)=A0i=0α21A1(i)[xieβ2xk=0α1+α2i2k!(β1β2)kxk+ieβ1x](7)
其中
A 0 = Δ A 0 ( α 1 , α 2 , β 1 , β 2 ) = β 1 α 1 β 2 α 2 Γ ( α 1 ) Γ ( α 2 ) A 1 ( i ) = Δ A 1 ( α 1 , α 2 , β 1 , β 2 , i ) = ( − 1 ) α 2 − 1 − i ( α 2 − 1 i ) ( α 1 + α 2 − i − 2 ) ! ( β 1 − β 2 ) − ( α 1 + α 2 − i − 1 ) (8) \begin{equation} \begin{aligned} A_0 &\overset{\Delta}{=} A_0(\alpha_1,\alpha_2,\beta_1,\beta_2)=\frac{\beta_1^{\alpha_1}\beta_2^{\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}\\ A_1(i)&\overset{\Delta}{=}A_1(\alpha_1,\alpha_2,\beta_1,\beta_2,i)=(-1)^{\alpha_2-1-i} \begin{pmatrix}\alpha_2-1\\ i\end{pmatrix}(\alpha_1+\alpha_2-i-2)!(\beta_1-\beta_2)^{-(\alpha_1+\alpha_2-i-1)} \end{aligned} \end{equation}\tag{8} A0A1(i)=ΔA0(α1,α2,β1,β2)=Γ(α1)Γ(α2)β1α1β2α2=ΔA1(α1,α2,β1,β2,i)=(1)α21i(α21i)(α1+α2i2)!(β1β2)(α1+α2i1)(8)
X X X的cdf可以表示为其pdf的积分,因此
F x ( x ) = ∫ 0 x f x ( x ) d x = I 0 − I 1 (9) \begin{equation} \begin{aligned} F_x(x)=\int_0^x f_x(x)dx=I_0-I_1 \end{aligned} \end{equation}\tag{9} Fx(x)=0xfx(x)dx=I0I1(9)
其中
$$
\begin{equation}
\begin{aligned}
I_0&=A_0\sum_{i=0}{\alpha_2-1}A_1(i)\int_0x x^i e^{-\beta_2 x}dx\
&=A_0\sum_{i=0}^{\alpha_2-1}A_1(i) i!\beta_2{-(i+1)}[1-\sum_{k=0}i{\frac{\beta_2^k}{k!} x^k e^{-\beta_2 x}}]\

  I_1&=A_0\sum_{i=0}^{\alpha_2-1}A_1(i)\sum_{k=0}^{\alpha_1+\alpha_2-i-2}{\frac{(\beta_1-\beta_2)^k}{k!} \int_0^x x^{k+i} e^{-\beta_1 x}}dx\\
  &=A_0\sum_{i=0}^{\alpha_2-1}A_1(i)\sum_{k=0}^{\alpha_1+\alpha_2-i-2}\frac{(\beta_1-\beta_2)^k}{k!}(k+i)!\beta_1^{-(k+i+1)}[1-\sum_{j=0}^{k+i}{\frac{\beta_1^j}{j!} x^j e^{-\beta_1 x}}]

\end{aligned}
\end{equation}\tag{10}
将 ( 10 ) 带入 ( 9 ) 并整理得到 将(10)带入(9)并整理得到 (10)带入(9)并整理得到
\begin{equation}
\begin{aligned}
F_x(x)&=A_0\sum_{i=0}{\alpha_2-1}A_1(i)[i!\beta_2{-(i+1)}-\sum_{k=0}{\alpha_1+\alpha_2-i-2}\frac{(\beta_1-\beta_2)k}{k!}(k+i)!\beta_1^{-(k+i+1)}]\
&-A_0\sum_{i=0}{\alpha_2-1}A_1(i)[i!\sum_{k=0}i{\frac{\beta_2^{-(i-k+1)}}{k!} x^k e^{-\beta_2 x}}-\sum_{k=0}{\alpha_1+\alpha_2-i-2}\frac{(\beta_1-\beta_2)k}{k!}(k+i)!\sum_{j=0}{k+i}{\frac{\beta_1{-(k+i-j+1)}}{j!} x^j e^{-\beta_1 x}}]
\end{aligned}
\end{equation}\tag{11}
通过数值仿真发现 ( 11 ) 式中的前一部分满足 通过数值仿真发现(11)式中的前一部分满足 通过数值仿真发现(11)式中的前一部分满足
A_0\sum_{i=0}{\alpha_2-1}A_1(i)[i!\beta_2{-(i+1)}-\sum_{k=0}{\alpha_1+\alpha_2-i-2}\frac{(\beta_1-\beta_2)k}{k!}(k+i)!\beta_1^{-(k+i+1)}]\equiv 1
$$
但是目前还不知道如何证明?显然此时pdf和cdf的表达式均很复杂,也有可能还没有化简到最简形式,但是暂时不知道怎样化简下去了。


参考文献

[1] Table of Integrals, Series, and Products

  • 24
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值