引导扩散模型实现抗体序列与结构共同设计

研究人员利用深度生成方法,特别是DiffAb模型,考虑溶解度和折叠稳定性等因素,实现抗体CDRs的序列和结构共同设计,以提升定制抗体的开发性。实验结果表明,结合亲水度等属性采样能优化抗体性能和开发性参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天为大家介绍的是来自Amelia Villegas-Morcillo团队的一篇论文。近期,在深度生成方法方面的进展使得抗体序列和结构的共同设计成为可能。该研究致力于解决一个挑战:定制抗体中高度变异的互补性决定区(CDRs),以满足开发性要求。作者将属性指导整合到使用扩散概率模型的抗体设计过程中。这种方法允许在考虑溶解度和折叠稳定性等关键属性的同时,根据抗原结构条件化地设计CDRs。

d6f252bab2e86ed727886934162aed33.png

抗体是免疫系统对抗病原体时产生的Y形蛋白质。抗体工程涉及对高度可变的互补性决定区(CDR)环进行精细调整,以增强其功能或某些特性。传统基于计算机的设计方法依赖于基于能量的优化,这既耗时又耗力。最近在深度生成方法方面的进展通过同时共同设计CDR的序列和结构,提供了更高的性能。这些方法相较于基于序列的方法的一大优势在于,它们能够在生成过程中同时考虑抗原表位和抗体框架结构,这对亲和力优化非常有用。除了抗体的抗原靶向性能外,其开发性属性对于治疗性开发至关重要。这些属性包括溶解度、聚集倾向、热稳定性和免疫原性等。这些属性对于确保抗体能够制造并适用于临床应用至关重要。尽管现有方法部分地优化了抗原靶向属性,但开发性参数的整合仍是一个开放且关键的挑战。因此,在本研究中,作者使用基于属性条件化的扩散概率模型来设计抗体,以生成CDR环的新序列和结构。

模型设计

8c8c8c0f7f671ddf17a9b6e556e9aaf6.png
图 1

作者的工作基于使用扩散模型进行抗体序列和结构共同设计的现有方法。具体来说,作者使用了DiffAb模型,该模型能够在考虑抗体框架和结合抗原的情况下,共同生成CDR序列和结构。该模型需要三种输入:氨基酸表示,Cα原子位置,以及氨基酸方向表示。前向扩散过程逐渐通过不同的分布向先验分布引入噪声。氨基酸类型表示遵循多项式分布;对于Cα位置被建模为高斯分布;对于氨基酸方向是各向同性的高斯分布。从先验分布开始,生成扩散过程将每种模态转变为相应的数据分布,如图1b所示。在这个过程中,采用参数网络来近似每个生成时间步骤的后验分布。对于这三种模态使用不同的神经网络,具有共享的编码器和分离的解码器。氨基酸类型的先验分布遵循20个类别的均匀分布。作者在这基础上提出了一种基于属性感知先验的采样方法,如图1c所示,通过考虑氨基酸的特定属性(如亲水度),来调整选择氨基酸类型的概率。

实验部分

66836cb877720c4c9851e657a6416692.png
图 2

作者评估了基于属性感知的方法。图2展示了每10个时间步骤中间CDR-H3设计的性能指标。可以观察到,通过亲水度进行采样导致亲水度得分和AAR(平均绝对残差)的变化比使用亲水度感知的先验更大。这表明通过亲水度采样生成的CDR序列与参考序列相比有更显著的不同。此外,与未条件化模式相比,仅通过 ΔΔG (折叠能量)采样可以改善亲水度得分,而仅通过亲水度采样可以改善预测的 ΔΔG。当两个属性结合时,会得到最有利的结果。同时,AAR和RMSD(均方根偏差)值在各个模型中保持一致,这有助于避免与参考CDR的显著偏离。

c0fd72dbde16502ee50106187c10fe4b.png
表 1

亲水度感知旨在设计包含亲水性氨基酸类型的CDR序列,同时不损害目标结合亲和力。作者发现,通过亲水度采样导致最终氨基酸分布向精氨酸(R)和天冬氨酸(D)发生了最显著的转变,这两种氨基酸是最亲水的氨基酸之一。此外,这种方法消除了大多数疏水氨基酸。使用亲水度感知的先验时,这种效果不那么强烈,主要是因为模型在生成过程的末端对先验的依赖较少。无论是单独使用 ΔΔG 进行采样还是与亲水度结合使用,也会增加诸如酪氨酸(Y)这样的亲水性氨基酸的数量。表1数据表明了两种属性之间的相关性,改善的亲水度特性导致更大的暴露表面积,这对于抗体-抗原相互作用是必需的。

参考资料

Villegas-Morcillo, A., Weber, J. M., & Reinders, M. J. (2023). Guiding diffusion models for antibody sequence and structure co-design with developability properties. bioRxiv, 2023-11.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DrugAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值