《更好的解释(数学篇)》——第六章 复数运算

復數運算

虛數有一個直觀化的解釋:它把數字“旋轉”,就像負數把數字做了“鏡像”一樣。這種深刻的見解使得我們理解復數的元算變得十分簡單並且清晰,而且也可以很好的檢查一下你是否學會了這種見解。以下是我們的作弊表:

這一章我們將逐一檢驗一遍我們的直觀化的解釋。

6.1 復變量

在常規代數中,我們經常說“x=3”,這樣很好——有一個變量x,它的值是3。而在復數中,我們就會發現:有兩個維度需要討論。寫下:

z=3+4i

我們就是在說有一個變量z,它有兩部分:3(實數部分)與4i(虛數部分)。一個數有兩部分看上去有些怪,但是我們已經用過這種表示方法了。我們經常會寫:

y=3410=3+0.4

y有一個整數部分(3)與一個分數部分(0.4或4/10)並不會影響我們理解它。Y是兩部分的組合。復數也與之類似:在一個變量中它包含有實數部分與虛數部分(通常縮寫為Re與Im)。

不幸的是,我們沒有辦法把它們“合起來”記作一個數(像3.4那樣)。我有一個辦法把用黑筆把虛數部分垂直的寫在虛數上方,但是這種方法並不流行。所以我們還是繼續使用“a+bi”的形式吧。

6.2 測量大小

因為復數有兩個獨立的數軸,我們發現它的大小可以使用勾股定理:

那麼,復數3+4i的大小就是5。通常記作:|z|。

看起來很像是絕對值吧?其實從某種角度來看,它就是絕對值。|z|描述了復數距離零點的距離,就像是絕對值表示負數距離零點的距離一樣。

6.3 復數的加法與減法

我們通常見到的加法可以被認為是“移動”一段數字而得到。復數的加法也可以這樣類比,不過我們有兩個維度(實數與虛數)可以移動。舉個例子:

(3+4i)與(-1+i)相加就可以得到2+5i。

再一次的,這種可視化的解釋幫助我們理解“獨立的部分”是如何組合在一起的:實部與虛部各自處理再組合就可以了。

減法就是加法的逆——就是把它向相反的方向移動。減去(1+i)就是加上-1·(1+i),或者是加上(-1-i)。

6.4 復數的乘法

這裏數學就會變得很有趣。我們把兩個復數(x,y)相乘得到z:

  • 角度相加:角度(z)=角度(x)+角度(y)

  • 長度相乘:|z|=|x||y|

這就是說,z的角度是x的角度與y的角度的和,而長度就是它們的乘積。無論你相信與否,復數的這種性質幫了數學很大的忙!

長度相乘有它的意義——我們在一般的乘法中就是這麼做的(3×4就是把3跟4的長度相乘)。角度的相加需要更詳細的討論,我們以後再談(很好奇嗎?看看正余弦函數是如何相加的,並把它們與(a+bi)·(c+di)比較一下)。

現在舉另一個例子:我們把z=3+4i乘以它自己。在做數學運算前,我們已經知道:

  • 長度的結果會是25.因為z的長度為5,所以|z|·|z|=25

  • 角度的結果是大於90度。因為3+4i的角度大於45度(因為3+3i正好是45度),所以翻倍後比90度大。

接下來我們做數學運算:

(3+4i)·(3+4i)=9+16i+24i=-7+24i

現在來檢查一下我們預測:

  • 長度: (7)2+242=625=25  跟我們的預測相符

  • 角度:因為-7是負的而24i是個正的, 我們便知道我們要“向後並向上”,這就是說將跨過90度(“直直的”)。專業一點就是,我們計算arctan(24/-7)=106.2度(記住我們在第二象限)。這個也驗證了我們的猜想。

漂亮。我們做數學運算時,還可以用我們關於旋轉與大小的直觀化認識來幫助我們檢查結果。如果最後的結果小於90度(比如說,向前又向上),或者我們的長度不是25,我們便知道計算出了一些問題。

6.5 復數的除法

除法就是乘法的逆運算。就像減法是加法的逆運算一樣。復數相除時(x/y),我們可以知道:

  • 角度相減:角度(z)=角度(x)-角度(y)

  • 長度相除:|z|=|x|/|y|

看起來很不錯。現在讓我們做一做這個除法:

(3+4i)/(1+i)

呃,該從哪裏開始呢?我們應該怎麼做這個除法呢?通常的代數解法並不能幫不上什麼忙,更不用說還有一個古怪的i(先生,先生,你知道1/i=-i嗎?兩邊同乘以i再看看一看啊。)幸好我們還有捷徑可走。

6.6 引入復數的共軛

我們做復數除法的第一個目標就是把角度相減。我們怎麼做呢?乘以與它相反的角度!這就會“加上”一個負的角度,等價於做了一次角度減法。

不再是z+bi,現在考慮以下z=a-bi,叫作“復數共軛”。實部相等,但是虛部是一個“鏡像”。復數共軛或者說“想像的一種反射”有著相同的長度,但是角度相反!

所以,乘以a-bi就是減去一個角度。很簡潔。

復數共軛用星號(z)或者是橫線表示()——數學家喜歡爭論這些表示法的好壞。不管哪種表示方法,復數的共軛都是把它們的虛部翻轉而已:

z=a+bi

它的復數共軛就是:

z=a-bi

註意,b不一定是要“負的”。如果z=3-4i,那麼z=3+4i。

6.7 乘以復數的共軛

如果乘以一個復數乘以它的共軛會發生什麼呢?z乘以z等於多少呢?看看這個:

z·z=1·z·z

所以我們選擇一個1(一個實數),加上z的角度,再加上z的角度。但是最後一個角度是負的——是個減法!所以我們最終的結果就是一個實數,因為我們把角度消掉了。數字就是|z|,因為我們把大小乘了兩次。

現在讓我們再做一個例題:(3+4i)(3-4i)=9-16i=25

我們得到了一個實數,正如我們所預料的!數學愛好者同樣可以試一試這個代數運算:

(a+bi)(a-bi)=a+abi-abi+b2i2= a+ b2

啊哈!最後結果沒有虛數部分,而隻是大小的平方。我們把復數的共軛認為是一種“反方向旋轉”幫助我們預測到了這一結果。

6.8 改變的你的數字

我們乘以一個共軛z,就相當於乘以一個|z*|。【管理解:乘以共軛(参见上一节)相当于模的平方,角度抵消】為了得到相反的效果,我們可以除以|z|,而要再是縮小了|z|我們再除一次即可【管理解:乘以共

總的來說,如果我們乘以一個復共軛那麼我們就需要除以|z||z|來保持原數不變。  【我的理解:乘以復共軛,就是乘以两次共軛,乘以一次復共軛角度是抵消的,模是平方的,所以要除以模才能抵消。在乘以一次共軛,就再除以模抵消】

6.9 向我展示除法!

我之前迴避了一些除法,現在是見證奇跡的時刻。如果我們想計算

(3+4i)/(1+i)

我們可以馬上得到:

  • 旋轉一個相反的角度:乘以(1-i)而不是(1+i)

  • 除以長度的平方:除以|21/2|=2         【管得理解:这里有 这里|21/2| 是 (1+i)或 (1-i)的模 ,之所以要除以模的平方,一个模是为了抵消乘以共轭,另一个模是除法的概念:

    (1)角度相減:角度(z)=角度(x)-角度(y)

    (2)長度相除:|z|=|x|/|y|

    这里的长度相除 ,除以|y|,就是另外一个模的来历了。

    】                                      

答案是:

(3+4i)/(1+i)=(3+4i)(1-i)(1/2)=(3-4i+4i-3i)(1/2)=7/2+(1/2)i                   

【管的理解:(3+4i)(1-i)(1/2)  就是 (3+4i)/(1+i)上下同乘以分母的復共軛 的结果,这里直接除以2,其实就是(1+i)乘以(1-i) 】

 【管的理解:|21/2| 就是 |根号2|  ,也就是(1-i) 和 (1+i) 的大小,因为分母是(1+i)乘以(1-i) ,所以分母为 |21/2|=2  】

更常見的方法是上下同乘以分母的復共軛。【这是第二种方法,其实和第一种方法一样,上(3+4i)乘以共轭(1-i)是为了实现除法的 角度相减,这个时候要除以共轭的模以抵消和共轭相乘长度的相乘这是一个因素,除法长度要相除这是另一个因素,所以把两者合并,就是(1+i)乘以共轭(1-i),也就是(1/2)分母2的来历。从形式来看就是 上下同乘以分母的共軛。

(3+4i)/(1+i)=(3+4i)(1-i)(1/2)  

我們通常隻是被告訴“隻管上下同乘以它的復共軛”就行了,而從來沒能明白其中的原因。今天我們搞明白了。

兩種方法都可以(通常使用後一種方法),但是用其中一種檢查另外一種也是個不錯的主意。

6.10 更多的數學技巧

現在我們既然理解了復共軛,這裏有幾個關於復共軛的性質:

  • (x+y)= x+ y

  • (x·y)= x* · y

第一個很容易理解,兩個數的和再“反射(求共軛)”等價於把它們的共軛相加。另一種理解的辦法是:移動兩個數然後再取反【x+ y等價於同時把兩個數移動並取反【(x+y)

第二個性質就比較難理解了。沒錯,代數運算或許可以,但是更直觀的解釋是什麼呢?(x·y)的結果就是:

  • 把長度相乘:|x|·|y|

  • 把角度相加並取共軛(相反):角度(x)+角度(y)變為 -角度(x)+ -角度(y)

而x乘以y就是:

  • 長度相乘:|x|·|y|(跟上面的相同)

  • 共軛角度相加:角度(x*)+角度(y*)=-角度(x*)+-角度(y*)【这里是不是写错了,共軛角度相加:角度(x*)+角度(y*)=-角度(x)+-角度(y)??????】

啊哈!我們得到了相同的結果,而我們不需要用傳統的代數方法。代數方法也可以,但是並不是最讓人滿意的解釋。

6.11 一個簡單示例

共軛就是“撤銷”一次旋轉。試著這樣考慮:

  • 我存了 3, 10, 15.75, 23.5到我的帳戶。什麼交易會把這些交易抵消呢?相反的操作:加上它們,然後乘以-1.

  • 我通過幾次相乘把一套直線做了幾次旋轉:(3+4i),(1+i),(2+10i)。什麼樣的操作會把這些旋轉抵消呢?相反的操作:乘以這些復數,取它們的復共軛便得到結果。【管的理解:(x·y)= x* · y

看到了吧,復共軛就是相當於一種撤銷操作,就像負數撤銷了相加的效果一樣。警告:處理復共軛時,你需要除以|z||z|這樣才能抵消它們對大小的影響。

6.12 最後的一些想法

這裏的數學並沒有什麼新的東西,但是我一直沒意識到復共軛是怎麼發揮作用的。為什麼是a-bi而不是-a+bi呢?復共軛並不是一個隨意的選擇,是從虛數角度考慮的一種鏡像,正好就是相反的角度。

看到把虛數看作旋轉給了我們一種解決問題的新思路;“乘上再消去”給了我們一種直覺,即使是討論像復數一樣怪異的話題。希望你能享受到快樂的數學。



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值