最新开源:阿里开源QwQ-32B-Preview推理大模型!月之暗面Kimi开源大模型推理架构 Mooncake!阿里开源图像生成模型Qwen2VL-Flux!

来源:HsuDan[最新开源:阿里巴巴开源推理模型 Marco-o1!智子引擎开源多模态MoE大模型 Awaker2.5-VL!]

1. 阿里发布首个开源推理大模型 QwQ-32B-Preview!自我思考、数学能力媲美OpenAI o1

11月28日,阿里Qwen团队发布首个开源推理大模型 QwQ-32B-Preview

QwQ(Qwenwith Questions)是通义千问Qwen系列的最新实验性研究模型,旨在提升 AI 的推理能力QwQ-32B-Preview 在评测数据中表现出色,尤其在数学和编程领域的深度推理任务上,展现出研究生级别的能力。

图片

  • GPQA: 测试模型在常识问答和通用知识理解上的能力。

  • AIME: 检验模型对高难度数学竞赛题目的解题能力。

  • MATH-500: 测评模型在广泛数学领域中解决复杂问题的表现。

  • LiveCodeBench: 测试模型生成、调试和实现代码的编程能力。

具体地,QwQ-32B-Preview 在各项基准测试中的表现如下:

图片

  • 在考察科学问题解决能力的 GPQA 评测集上,QwQ 获得 65.2% 的准确率,具备研究生水平的科学推理能力;

  • 在涵盖综合数学主题的 AIME 评测中,QwQ 以 50% 的胜率证明其拥有解决数学问题的丰富技能;

  • 在全面考察数学解题能力的 MATH-500 评测中,QwQ 斩获 90.6% 的高分,一举超越OpenAI o1-preview 和 o1-mini,体现了在各类数学主题上的全面理解;

  • 在评估高难度代码生成的 LiveCodeBench 评测中,QwQ 答对一半的题,在编程竞赛题场景中也有出色表现。

值得注意的是,QwQ-32B-Preview 是一个模型参数仅有 32B 的小模型!更轻量化的模型意味着更高的计算资源效率、更快的推理速度,以及更低的硬件需求。

作为预览版本,该模型展示了出色的分析能力,但也存在一些重要的局限性,如语言混合递归推理循环以及安全和伦理方面的考虑。该模型在数学和编程方面表现优异,但在常识推理和语言理解方面仍有改进空间

图片

目前,QwQ-32B-Preview 已在魔搭社区和 HuggingFace 等平台上开源。

  • QwQ模型地址:https://huggingface.co/Qwen/QwQ-32B-Preview

  • QwQ体验地址:https://huggingface.co/spaces/Qwen/QwQ-32B-preview

  • QwQ模型链接:https://modelscope.cn/models/Qwen/QwQ-32B-Preview

  • QwQ体验链接:https://modelscope.cn/studios/Qwen/QwQ-32B-preview

  • QwQ中文博客:https://qwenlm.github.io/zh/blog/qwq-32b-preview/

2. 月之暗面Kimi联合清华大学等开源共建大模型推理架构 Mooncake

11月28日,月之暗面 Kimi 联合清华大学等机构,开源了大模型推理架构 Mooncake

在这篇名为《Mooncake: A KVCache-centric Disaggregated Architecture for LLM Serving》的论文中,作者详细介绍了 Mooncake 这种系统架构。

图片

图片

  • 论文链接:https://arxiv.org/pdf/2407.00079

  • 项目地址:https://github.com/kvcache-ai/Mooncake

Mooncake 是由 Moonshot AI 提出的长文高效推理架构,它采用了 KVCache 为中心的分离架构,将预填充和解码集群分开,并利用 GPU 集群中未充分利用的 CPU、DRAM 和 SSD 资源实现分离的 KVCache。

此次更新,开源了 Mooncake 的核心组件 Transfer Engine,还提供了 Transfer Engine 的两个演示:P2P Store 和 vLLM 集成。

图片

图:Mooncake 推理系统架构图

Mooncake 的核心是以 KVCache 为中心的调度程序,在最大化整体有效吞吐量和满足与延迟相关的服务级目标(SLO)之间取得平衡。

Mooncake 不仅提升了 Kimi 的用户体验和降低了成本,还为处理长文本和高并发需求提供了有效的解决方案,承载 Kimi 线上 80% 流量。

3. 阿里开源图像生成模型 Qwen2VL-Flux,支持图像融合和风格转移等

Qwen2VL-Flux 是一款先进的多模态图像生成模型,结合了 FLUX 框架和 Qwen2VL 的视觉语言理解能力。该模型能够根据文本提示和视觉参考生成高质量图像,提供卓越的多模态理解和控制能力。

Qwen2VL-Flux 不仅能够根据用户输入的图像生成多幅相似图像,还支持文本引导的图像混合和图像引导的图像融合。用户可以通过简单的操作实现角色合体、场景转换以及细致的风格迁移。

图片

  • 代码链接:https://github.com/erwold/qwen2vl-flux

  • 模型链接:https://huggingface.co/Djrango/Qwen2vl-Flux

图片

图:Qwen2vl-Flux 框架

Qwen2VL-Flux 有以下特征:

  • 增强视觉语言理解:利用 Qwen2VL 实现卓越的多模式理解;

  • 多种生成模式:支持变异、img2img、修复和控制网引导生成;

  • 结构控制:集成深度估计和线路检测,实现精确的结构引导;

  • 灵活的注意力机制:通过空间注意力控制支持焦点生成;

  • 高分辨率输出:支持高达 1536x1024 的各种宽高比。

图片

图:「图像变化」在保持原始图像本质的同时,创造出多样化的变化。

图片

图:「图像混合」通过智能风格转换无缝融合多幅图像

图片

图:「文本引导的图像混合」通过文本提示控制图像生成

图片

图:「基于网格的风格迁移」应用网格注意力的细粒度样式控制

参考:
https://qwenlm.github.io/zh/blog/qwq-32b-preview/

欢迎各位关注我的个人微信公众号:HsuDan,我将分享更多自己的学习心得、避坑总结、面试经验、AI最新技术资讯。

<think>嗯,用户问的是如何通过Xinference的launch命令直接启动QwQ-32B模型。首先,我需要确认Xinference是否支持这个模型。因为Xinference支持的模型通常是Hugging Face上的开源模型,或者社区中常用的模型QwQ-32B可能是一个特定的模型,可能用户有自定义的配置或者是从某个来源获取的。需要先检查官方文档或者模型库是否有这个模型的名称。 接下来,launch命令的用法是关键。用户可能需要知道正确的模型名称参数,比如--model-name,以及可能的其他参数如模型格式、大小等。如果QwQ-32B属于大模型,可能需要指定--size-in-billions参数为32,但不确定Xinference是否接受这样的参数。或者,是否有其他的参数需要配置,比如--model-format,是否支持不同的格式如ggml或pytorch。 另外,模型是否已经下载到本地,或者是否需要从远程拉取。如果模型不在本地缓存中,Xinference可能需要联网下载,但需要正确的模型标识符。可能用户需要确认模型在Hugging Face上的名称,或者是否有自定义的模型路径。 还有,用户可能遇到的一些常见问题,比如模型名称拼写错误、参数不正确、内存不足等。需要提醒用户检查这些方,并提供查看日志的方法来进一步排查错误。同时,如果Xinference不支持该模型,可能需要自定义模型配置,或者使用其他方式加载。 总结步骤的话,应该是先确定模型是否受支持,然后正确使用launch命令的参数,处理可能的依赖和资源问题,最后验证模型是否加载成功。需要给出具体的命令示例,并解释每个参数的作用,以及可能的错误处理办法。</think>以下是使用Xinference通过`launch`命令直接启动QwQ-32B模型的详细步骤和注意事项: --- ### **步骤1:确认模型支持性** 1. **检查Xinference支持的模型列表** 在Xinference官方文档或支持的Hugging Face模型库中,确认`QwQ-32B`是否已被集成。 - 若未明确列出,可能是社区自定义模型,需自行验证兼容性。 2. **模型命名规范** Xinference通过`--model-name`参数匹配模型标识符。 - 例如:若模型在Hugging Face的ID为`QwQ/QwQ-32B`,则参数应为`--model-name QwQ/QwQ-32B`。 --- ### **步骤2:基础启动命令** ```bash xinference launch \ --model-name "QwQ-32B" \ --size-in-billions 32 \ # 指定模型规模(32B) --model-format "pytorch" \ # 格式根据实际选择(如pytorch, ggml等) --n-gpu 2 \ # 指定GPU数量(按需调整) --endpoint "http://0.0.0.0:9997" # 服务监听地址 ``` #### **参数详解** | 参数 | 说明 | 示例值 | |------|------|--------| | `--model-name` | 模型唯一标识符(Hugging Face路径或本地名称) | `QwQ/QwQ-32B` | | `--size-in-billions` | 模型参数量级(32B需设为32) | `32` | | `--model-format` | 模型文件格式(需与下载的权重匹配) | `pytorch`, `ggml`, `awq`等 | | `--n-gpu` | 使用的GPU数量(0表示仅CPU) | `2` | | `--endpoint` | 服务监听地址 | `http://0.0.0.0:9997` | --- ### **步骤3:处理常见问题** #### **场景1:模型未找到** - **错误提示** `Model "QwQ-32B" not found in Xinference registry.` - **解决方案** 1. 确认模型名称与Hugging Face完全一致(注意大小写)。 2. 若为自定义模型,需通过`--model-path`指定本地路径: ```bash xinference launch --model-name "custom-qwq" --model-path "/path/to/QwQ-32B" ``` #### **场景2:显存不足** - **错误提示** `CUDA out of memory` - **解决方案** 1. 减少`--n-gpu`数量或使用`--quantization`量化: ```bash xinference launch ... --quantization "4-bit" # 支持4-bit、8-bit等 ``` 2. 增加GPU显存(如使用A100 80GB)。 --- ### **步骤4:验证模型加载** 1. **查看已加载模型** ```bash xinference list ``` ```text UID TYPE NAME SIZE FORMAT DEVICE STATUS uid-123456 LLM QwQ-32B 32B pytorch GPU:2 Running ``` 2. **API调用测试** ```bash curl -X POST http://127.0.0.1:9997/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "QwQ-32B", "prompt": "你好", "max_tokens": 50 }' ``` --- ### **高级配置** #### **自定义超参数** 通过`--generate-config`调整生成策略: ```bash xinference launch ... \ --generate-config '{"temperature": 0.7, "top_p": 0.9}' ``` #### **分布式部署** 多节点启动时指定`--rank`和`--world-size`: ```bash # 节点1(主节点) xinference launch ... --endpoint http://192.168.1.100:9997 --rank 0 --world-size 2 # 节点2 xinference launch ... --endpoint http://192.168.1.101:9997 --rank 1 --world-size 2 ``` --- ### **总结** 1. **核心命令**:确保`--model-name`正确匹配模型标识符,并指定`--size-in-billions 32`。 2. **资源适配**:根据硬件调整`--n-gpu`和量化参数。 3. **验证加载**:通过`xinference list`和API调用确认模型可用性。 若仍失败,可检查: - 模型文件完整性(下载中断可能导致权重损坏) - Xinference版本是否支持32B模型(升级至最新版) - 日志文件`~/.xinference/logs/xinference.log`中的错误详情
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值