Graph Attention Network (GAT) 图注意力模型

GCN结合邻近节点特征的方式和图的结构依依相关,这也给GCN带来了几个问题:

  • 无法完成inductive任务,即处理动态图问题。inductive任务是指:训练阶段与测试阶段需要处理的graph不同。通常是训练阶段只是在子图(subgraph)上进行,测试阶段需要处理未知的顶点。(unseen node)
  • 处理有向图的瓶颈,不容易实现分配不同的学习权重给不同的neighbor

于是,Bengio等人在ICLR 2018上提出了图注意力(GAT)模型,论文详见:Graph Attention Networks

1. GAT基本原理

在这里插入图片描述

结合上图,GAT的核心思想就是针对节点 i i i和节点 j j j , GAT首先学习了他们之间的注意力权重 a i , j a_{i,j} ai,j(如左图所示);然后,基于注意力权重 { a 1 , . . . , a 6 } \{a_1, ... , a_6\} {a1,...,a6}来对节点 { 1 , 2 , . . . , 6 } \{1, 2, ... ,6\} {1,2,...,6}的表示 { h 1 , . . . , h 6 } \{h_1, ... , h_6\} {h1,...,h6}加权平均,进而得到节点1的表示 h 1 ′ {h}'_1 h1

和所有的attention mechanism一样,GAT的计算也分为两步走:

1.1 计算注意力系数(attention coefficient)

对于顶点 i i i ,逐个计算它的邻居们和它自己之间的相似系数
在这里插入图片描述
解读一下这个公式:

  • 首先一个共享参数 W W W的线性映射对于顶点的特征进行了增维,当然这是一种常见的特征增强(feature augment)方法;
  • ∣ ∣ || ∣∣对于顶点 i , j i, j i,j 的变换后的特征进行了拼接(concatenate);
  • 最后 a ( ) a() a() 把拼接后的高维特征映射到一个实数上。这里,作者是通过 single-layer feedforward neural network实现的。

显然学习顶点 i , j i, j i,j 之间的相关性,就是通过可学习的参数 W W W 和映射 a ( ) a() a() 完成的。

有了相关系数,离注意力系数就差归一化了!其实就是用个softmax
在这里插入图片描述

1.2 特征加权求和(aggregate)

第二步很简单,根据计算好的注意力系数,把特征加权求和(aggregate)一下。
在这里插入图片描述
h i ′ {h}'_i hi 就是GAT输出的对于每个顶点 i i i 的新特征(融合了邻域信息)。

1.3 multi-head attention

在这里插入图片描述
multi-head attention也可以理解成用了ensemble的方法。

1.4 Mask graph attention / global graph attention

还有一件事件需要提前说清楚:GAT本质上可以有两种运算方式的,这也是原文中作者提到的

  • Global graph attention
    顾名思义,就是每一个顶点 i i i 都对于图上任意顶点都进行attention运算。

    • 优点:完全不依赖于图的结构,对于inductive任务无压力
    • 缺点:(1)丢掉了图结构的这个特征,无异于自废武功,效果可能会很差(2)运算面临着高昂的成本
  • Mask graph attention
    注意力机制的运算只在邻居顶点上进行。

作者在原文中GAT ARCHITECTURE这一节中写道"We inject the graph structure into the mechanism by performing masked attention—we only compute eij for nodes j ∈Ni, whereNi is some neighborhood of node i in the graph. "

显然作者在文中采用的是masked attention,DGL里实现的也是如此,以下的解读均基于这种方式。

【推荐阅读】关于GAT的解读,推荐下面几篇文章:

2. GAT实现代码

GAT实现代码Github地址:Pytorch | Tensorflow | Keras

PyTorch版代码解析:

Tensorflow版代码解析:

3. GAT和GCN优缺点对比

本质上而言:GCN与GAT都是将邻居顶点的特征聚合到中心顶点上(一种aggregate运算),利用graph上的local stationary学习新的顶点特征表达。

不同的是:

  • GCN利用了拉普拉斯矩阵
  • GAT利用attention系数

一定程度上而言,GAT会更强,因为 顶点特征之间的相关性被更好地融入到模型中。

3.1 GCN缺点

  • GCN模型对于同阶的邻域上分配给不同的邻居的权重是完全相同的(也就是GAT论文里说的:无法允许为邻居中的不同节点指定不同的权重)。这一点限制了模型对于空间信息的相关性的捕捉能力,这也是在很多任务上不如GAT的根本原因。

  • GCN结合临近节点特征的方式和图的结构依依相关,这局限了训练所得模型在其他图结构上的泛化能力。

Graph Attention Network(GAT)提出了用注意力机制对邻近节点特征加权求和。 邻近节点特征的权重完全取决于节点特征,独立于图结构。GAT和GCN的核心区别在于如何收集并累和距离为1的邻居节点的特征表示。 图注意力模型GAT用注意力机制替代了GCN中固定的标准化操作。本质上,GAT只是将原本GCN的标准化函数替换为使用注意力权重的邻居节点特征聚合函数。

3.2 GAT优点

  • 在GAT中,图中的每个节点可以根据邻节点的特征,为其分配不同的权值。

  • GAT的另一个优点在于,引入注意力机制之后,只与相邻节点有关,即共享边的节点有关,无需得到整张图的信息。

    • (1)该图不需要是无向的(如果边缘 j->i 不存在,我们可以简单地省略计算 a i j a_{ij} aij
    • (2)它使我们的技术直接适用于Inductive Learning——包括在训练期间完全看不见的图形上的评估模型的任务。
  • GAT适用于有向图。原因在于GAT的运算方式是逐顶点的运算(node-wise)。每一次运算都需要循环遍历图上的所有顶点来完成。逐顶点运算意味着,摆脱了拉普利矩阵的束缚,使得有向图问题迎刃而解。

参考博客:【图结构】之图注意力网络GAT详解以及GAT的推广:https://www.jianshu.com/p/d5d366ba1a57

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值