Graph Attention Network (GAT) 图注意力模型

本文详细解析了图注意力网络(GAT)的基本原理与实现,包括计算注意力系数、特征加权求和等步骤,并对比了GAT与图卷积网络(GCN)的优缺点,阐述了GAT在处理动态图和有向图问题上的优势。

GCN结合邻近节点特征的方式和图的结构依依相关,这也给GCN带来了几个问题:

  • 无法完成inductive任务,即处理动态图问题。inductive任务是指:训练阶段与测试阶段需要处理的graph不同。通常是训练阶段只是在子图(subgraph)上进行,测试阶段需要处理未知的顶点。(unseen node)
  • 处理有向图的瓶颈,不容易实现分配不同的学习权重给不同的neighbor

于是,Bengio等人在ICLR 2018上提出了图注意力(GAT)模型,论文详见:Graph Attention Networks

1. GAT基本原理

在这里插入图片描述

结合上图,GAT的核心思想就是针对节点 i i i和节点 j j j , GAT首先学习了他们之间的注意力权重 a i , j a_{i,j} ai,j(如左图所示);然后,基于注意力权重 { a 1 , . . . , a 6 } \{a_1, ... , a_6\} { a1,...,a6<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值