PointNet++改进策略 :模块改进 | SPVConv, 体素和点云特征融合提升小目标检测能力

  • 论文题目:Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution
  • 发布期刊:ECCV
  • 通讯地址:麻省理工 & 清华大学
  • 代码地址:https://github.com/mit-han-lab/spvnas
    Pasted image 20240913094529

介绍

这篇论文的主题是如何为自驾车等应用场景设计高效的3D架构。论文提出了一个名为“稀疏点-体素卷积”(Sparse Point-Voxel Convolution, SPVConv)的3D深度学习模块,旨在在硬件资源有限的情况下提高3D感知模型对小目标(如行人和骑行者)的识别性能。传统的体素化方法由于分辨率低或过度下采样,导致模型难以识别这些小目标。SPVConv通过在标准的稀疏卷积基础上引入高分辨率的点云分支,显著提升了对细节的捕捉能力,并且计算开销很小。

为了进一步优化3D模型,论文还提出了3D神经架构搜索(3D-NAS)方法,它能够在一个多样化的设计空间中搜索出最优的3D网络架构。实验结果表明,基于SPVConv的SPVN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值