前言
以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。
BEV感知系列是对论文Delving into the Devils of Bird’s-eye-viewPerception: A Review, Evaluation and Recipe的翻译整理,有多处瑕疵,敬请谅解。
经验评估与策略
在本节中,我们总结了在各种基准点上取得最佳成绩的技巧和最有用的做法。这是基于我们2022 Waymo Open Challenge的参赛作品,即建立在BEV Former[4]之上的BEVFormer++,用于仅相机检测,以及源自SPVCNN[83]的Voxel SPVCNN,用于激光雷达分割。这些实践经验可以作为无缝集成到其他纯电动汽车感知模型中并评估疗效的参考。我们在以下内容中介绍了与数据扩充、BEV编码器、损耗选择相关的实践经验,并在附录的第E节中介绍了检测头设计、模型集成和后处理方面的额外实践经验。
数据增强
数据增强在增强感知模型的鲁棒性和泛化能力方面发挥着至关重要的作用。通过综合