第二十五章 BEV感知系列二(车道线感知)

本文围绕BEV感知展开,总结了在各种基准点上取得最佳成绩的技巧和做法。介绍了数据增强、BEV编码、损失选择等方面的实践经验,如BEVFormer++的多摄像机3D对象检测和地图分割系统,以及Voxel SPVCNN对原始SPVCNN的改进。最后指出未来研究方向,包括设计深度估计器、对齐多传感器特征等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。

BEV感知系列是对论文Delving into the Devils of Bird’s-eye-viewPerception: A Review, Evaluation and Recipe的翻译整理,有多处瑕疵,敬请谅解。

经验评估与策略

​ 在本节中,我们总结了在各种基准点上取得最佳成绩的技巧和最有用的做法。这是基于我们2022 Waymo Open Challenge的参赛作品,即建立在BEV Former[4]之上的BEVFormer++,用于仅相机检测,以及源自SPVCNN[83]的Voxel SPVCNN,用于激光雷达分割。这些实践经验可以作为无缝集成到其他纯电动汽车感知模型中并评估疗效的参考。我们在以下内容中介绍了与数据扩充、BEV编码器、损耗选择相关的实践经验,并在附录的第E节中介绍了检测头设计、模型集成和后处理方面的额外实践经验。

数据增强

数据增强在增强感知模型的鲁棒性和泛化能力方面发挥着至关重要的作用通过综合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值