Jetson 实现实时多摄像头管道

多摄像头应用越来越流行;它们对于实现自主机器人、智能视频分析( IVA )和 AR / VR 应用至关重要。无论具体的用例如何,都必须始终执行一些常见任务:

  • 俘虏
  • 预处理
  • 编码
  • 陈列

在许多情况下,您还希望在摄像头流上部署 DNN ,并在检测上运行自定义逻辑。图 1 显示了应用程序的一般流程。

Flowchart showing the data flow in the application. From left to right it contains the following stages: MIPI-CSI cameras, image capture , preprocessing , image batching, custom application logic, and H.264 encoding stage. The pipeline ends in "save to filesystem" stage.

图 1 。本项目实施的管道流程

在本文中,我将展示如何在 NVIDIA Jetson 平台上高效地实现这些常见任务。具体来说,我介绍了 jetmulticam ,一个易于使用的 Python 软件包,用于创建多摄像头管道。我在一个带有环绕摄像头系统的机器人上演示了一个特定的用例。最后,我添加了基于 DNN 对象检测的自定义逻辑(人员跟踪),以获得以下视频中显示的结果:

 演示显示了 3 个独立摄像头,视野约为 270 °。红色框对应 DashCamNet 检测,绿色框对应 PeopleNet 。 PeopleNet 检测用于执行人员跟踪逻辑 。

多摄像头硬件

选择相机时要考虑的参数有很多:分辨率、帧速率、光学、全局/滚动快门、界面、像素大小等。有关 NVIDIA 合作伙伴提供的兼容摄像头的更多信息,请参阅 comprehensive list 。

在这个特定的多摄像头设置中,可以使用以下硬件:

IMX185 摄像头的视野约为 90 °。如图 2 所示,以 270 °的总视场相互

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值