【python 图像处理】各种卷积滤波器的效果--cv2

在图像处理中,通常会用到一些经典的卷积滤波器,如低通滤波器、高斯滤波器、锐化滤波器、边缘检测、浮雕滤波器等。这些滤波器会产生不同的效果。下面用opencv实现这些出来看看效果:

这里写图片描述

                                                原图

这里写图片描述

                                            低通滤波器

这里写图片描述

                                            高斯滤波器

这里写图片描述

                                                                                                              锐化滤波器

这里写图片描述

                        边缘检测

这里写图片描述

                    **浮雕滤波器**
# encoding: utf-8
from __future__ import division
import sys
reload(sys)
sys.setdefaultencoding('utf-8')

import cv2
import numpy as np

#读取原图
image=cv2.imread("E:\\ID\\image\\timg.jpg")
cv2.imshow('original',image)

cv2.waitKey(0)
cv2.destroyAllWindows()



#低通滤波器
kernel1=np.array([[0.11,0.11,0.11],[0.11,0.11,0.11],[0.11,0.11,0.11]])
rect=cv2.filter2D(image,-1,kernel1)
cv2.imwrite("E:\\ID\\image\\rect.jpg",rect)

#高斯滤波器
kernel2=np.array([[1,4,7,4,1],[4,16,26,16,4],[7,26,41,26,7],[4,16,26,16,4],[1,4,7,4,1]])/273.0
gaussian=cv2.filter2D(image,-1,kernel2)
cv2.imwrite("E:\\ID\\image\\gaussian.jpg",gaussian)

#锐化滤波器
kernel3=np.array([[0,-2,0],[-2,9,-2],[0,-2,0]])
sharpen=cv2.filter2D(image,-1,kernel3)
cv2.imwrite("E:\\ID\\image\\sharpen.jpg",sharpen)


#边缘检测

kernel4=np.array([[-1,-1,-1],[-1,8,-1],[-1,-1,-1]])
edges=cv2.filter2D(image,-1,kernel4)
cv2.imwrite("E:\\ID\\image\\edges.jpg",edges)



#浮雕滤波器

kernel5=np.array([[-2,-2,-2,-2,0],[-2,-2,-2,0,2],[-2,-2,0,2,2],[-2,0,2,2,2],[0,2,2,2,2]])
emboss=cv2.filter2D(image,-1,kernel5)
emboss=cv2.cvtColor(emboss,cv2.COLOR_BGR2GRAY)
cv2.imwrite("E:\\ID\\image\\emboss.jpg",emboss)

总结:卷积滤波器是图像处理中非常重要的工具,使用简单的几行代码就可以实现许多photoshop能够达到的效果。

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读