Popov超稳定性在模型参考自适应(MRAS)中的应用

符号定义

  • 与参考文献2中一致

Popov超稳定性概述1

对于连续时间线性定常系统,超稳定性成立的条件有两个:

  1. 输入输出积分满足Popov积分不等式:
    ∫ 0 T u T ( t ) y ( t ) d t ≤ δ ( ∣ ∣ x ( 0 ) ∣ ∣ ) s u p 0 ≤ t ≤ T ∣ ∣ x ( t ) ∣ ∣ \int_{0}^{T}u^T(t)y(t)dt\leq\delta(||x(0)||)sup_{0\leq t \leq T}||x(t)|| 0TuT(t)y(t)dtδ(x(0))sup0tTx(t)
  2. 传递函数矩阵满足正实性。

在MRAS中的应用,以PMSM参数辨识为例

在参考文献2中,可以看到本身模型参考自适应原理比较简单,只是对于控制器设计和稳定性证明比较麻烦,用到了Popov超稳定性理论来设计控制器。
首先,参考模型选择与源模型相同,构造了一误差系统,只要保证该误差系统的状态变量收敛到0,则电机参数即可估计出来。
e ˙ = ( A + G ) e + Δ A i ^ + Δ B u + Δ C \dot{e}=(A+G)e+\Delta A\hat{i}+\Delta Bu+\Delta C e˙=(A+G)e+ΔAi^+ΔBu+ΔC
其中 e e e为误差矢量, e = i − i ^ , i = [ i d i q ] T , Δ A = A − A ^ , Δ B = B − B ^ , Δ C = C − C ^ e = i - \hat{i}, i = \left[ \begin{matrix} i_d & i_q \end{matrix} \right]^T, \Delta A = A - \hat{A}, \Delta B = B - \hat{B}, \Delta C = C - \hat{C} e=ii^,i=[idiq]T,ΔA=AA^,ΔB=BB^,ΔC=CC^。取 w = − ( Δ A i ^ + Δ B u + Δ C ) w = -(\Delta A\hat{i}+\Delta Bu+\Delta C) w=(ΔAi^+ΔBu+ΔC),则有:
e ˙ = ( A + G ) e − w \dot{e}=(A+G)e-w e˙=(A+G)ew
通过设计 G G G来保证系统传递函数矩阵严格正实3,设计 − w -w w来保证满足输入输出Popov积分不等式。在该系统中,有 A = [ − a w e − w e − a ] , A ^ = [ − a ^ w e − w e − a ^ ] , B = [ b 0 0 b ] , B ^ = [ b ^ 0 0 b ^ ] , C = [ 0 − w e c ] T , C ^ = [ 0 − w e c ^ ] T A = \left[ \begin{matrix} -a & w_e\\ -w_e & -a \end{matrix} \right], \hat{A} = \left[ \begin{matrix} -\hat{a} & w_e\\ -w_e & -\hat{a} \end{matrix} \right], B = \left[ \begin{matrix} b & 0\\ 0 & b \end{matrix} \right], \hat{B} = \left[ \begin{matrix} \hat{b} & 0\\ 0 & \hat{b} \end{matrix} \right], C = \left[ \begin{matrix} 0 & -w_ec \end{matrix} \right]^T, \hat{C} = \left[ \begin{matrix} 0 & -w_e\hat{c} \end{matrix} \right]^T A=[awewea],A^=[a^wewea^],B=[b00b],B^=[b^00b^],C=[0wec]T,C^=[0wec^]T,取 a ^ , b ^ , c ^ \hat{a}, \hat{b}, \hat{c} a^,b^,c^均为PI类型的控制器,有:
a ^ = ∫ 0 t f 1 ( τ ) d τ + f 2 ( t ) + a ^ ( 0 ) b ^ = ∫ 0 t g 1 ( τ ) d τ + g 2 ( t ) + b ^ ( 0 ) c ^ = ∫ 0 t h 1 ( τ ) d τ + h 2 ( t ) + c ^ ( 0 ) \hat{a}=\int_{0}^{t}f_1(\tau)d\tau + f_2(t) + \hat{a}(0) \\ \hat{b}=\int_{0}^{t}g_1(\tau)d\tau + g_2(t) + \hat{b}(0) \\ \hat{c}=\int_{0}^{t}h_1(\tau)d\tau + h_2(t) + \hat{c}(0) a^=0tf1(τ)dτ+f2(t)+a^(0)b^=0tg1(τ)dτ+g2(t)+b^(0)c^=0th1(τ)dτ+h2(t)+c^(0)
将上 a ^ , b ^ , c ^ \hat{a},\hat{b},\hat{c} a^,b^,c^计算式带入到Popov积分不等式中,其中 u ( t ) u(t) u(t)即为误差系统中的 − w -w w y ( t ) y(t) y(t)则为误差系统中的 e e e,借助matlab符号运算,即可得到化简后的Popov积分不等式如下:
∫ 0 T e q w e ( c − c ^ ) + ( e q i q ^ + e d i d ^ ) ( a − a ^ ) − ( e q u q + e d u d ) ( b − b ^ ) d t ≥ − γ 0 2 ⇒ ∫ 0 T e q w e ( c − ( ∫ 0 t h 1 ( τ ) d τ + h 2 ( t ) + c ^ ( 0 ) ) ) d t + ∫ 0 T ( e q i q ^ + e d i d ^ ) ( a − ( ∫ 0 t f 1 ( τ ) d τ + f 2 ( t ) + a ^ ( 0 ) ) ) d t − ∫ 0 T ( e q u q + e d u d ) ( b − ( ∫ 0 t g 1 ( τ ) d τ + g 2 ( t ) + b ^ ( 0 ) ) ) d t ≥ − γ 0 2 \int_{0}^{T}e_qw_e(c-\hat{c}) + (e_q\hat{i_q}+e_d\hat{i_d})(a-\hat{a}) - (e_qu_q + e_du_d)(b-\hat{b})dt \geq -\gamma_0^2 \\ \Rightarrow \\ \int_{0}^{T}e_qw_e(c-(\int_{0}^{t}h_1(\tau)d\tau + h_2(t) + \hat{c}(0)))dt \\ + \int_{0}^{T}(e_q\hat{i_q}+e_d\hat{i_d})(a-(\int_{0}^{t}f_1(\tau)d\tau + f_2(t) + \hat{a}(0)))dt \\ - \int_{0}^{T}(e_qu_q + e_du_d)(b-(\int_{0}^{t}g_1(\tau)d\tau + g_2(t) + \hat{b}(0)))dt \\ \geq -\gamma_0^2 0Teqwe(cc^)+(eqiq^+edid^)(aa^)(equq+edud)(bb^)dtγ020Teqwe(c(0th1(τ)dτ+h2(t)+c^(0)))dt+0T(eqiq^+edid^)(a(0tf1(τ)dτ+f2(t)+a^(0)))dt0T(equq+edud)(b(0tg1(τ)dτ+g2(t)+b^(0)))dtγ02

其中, γ 0 \gamma_0 γ0为一误差系统中与系统变量(即误差 e e e)初值相关的量。 e d = i d − i d ^ , e q = i q − i q ^ e_d=i_d-\hat{i_d},e_q=i_q-\hat{i_q} ed=idid^,eq=iqiq^可以看到,要满足上式,即使:
∫ 0 T e q w e ( c − ( ∫ 0 t h 1 ( τ ) d τ + h 2 ( t ) + c ^ ( 0 ) ) ) d t ≥ − γ 1 2 ∫ 0 T ( e q i q ^ + e d i d ^ ) ( a − ( ∫ 0 t f 1 ( τ ) d τ + f 2 ( t ) + a ^ ( 0 ) ) ) d t ≥ − γ 2 2 ∫ 0 T ( e q u q + e d u d ) ( b − ( ∫ 0 t g 1 ( τ ) d τ + g 2 ( t ) + b ^ ( 0 ) ) ) d t ≥ − γ 3 2 \int_{0}^{T}e_qw_e(c-(\int_{0}^{t}h_1(\tau)d\tau + h_2(t) + \hat{c}(0)))dt \geq -\gamma_1^2 \\ \int_{0}^{T}(e_q\hat{i_q}+e_d\hat{i_d})(a-(\int_{0}^{t}f_1(\tau)d\tau + f_2(t) + \hat{a}(0)))dt \geq -\gamma_2^2 \\ \int_{0}^{T}(e_qu_q + e_du_d)(b-(\int_{0}^{t}g_1(\tau)d\tau + g_2(t) + \hat{b}(0)))dt \geq -\gamma_3^2 0Teqwe(c(0th1(τ)dτ+h2(t)+c^(0)))dtγ120T(eqiq^+edid^)(a(0tf1(τ)dτ+f2(t)+a^(0)))dtγ220T(equq+edud)(b(0tg1(τ)dτ+g2(t)+b^(0)))dtγ32
均满足即可。以上三式中第一个不等式为例,将其拆开,可以得到:
∫ 0 T e q w e ( c − ∫ 0 t h 1 ( τ ) d τ − c ^ ( 0 ) ) d t ≥ − γ 11 2 ∫ 0 T − e q w e h 2 ( t ) d t ≥ − γ 12 2 \int_{0}^{T}e_qw_e(c-\int_{0}^{t}h_1(\tau)d\tau - \hat{c}(0))dt \geq -\gamma_{11}^2 \\ \int_{0}^{T}-e_qw_eh_2(t)dt \geq -\gamma_{12}^2 0Teqwe(c0th1(τ)dτc^(0))dtγ1120Teqweh2(t)dtγ122
均满足即可。对于上两式中的第一式,可以利用如下不等式:
∫ 0 T d f ( t ) d t k f ( t ) d t = k 2 [ f 2 ( T ) − f 2 ( 0 ) ] ≥ k 2 f 2 ( 0 ) \int_{0}^{T}\frac{df(t)}{dt}kf(t)dt=\frac{k}{2}[f^2(T)-f^2(0)] \geq \frac{k}{2}f^2(0) 0Tdtdf(t)kf(t)dt=2k[f2(T)f2(0)]2kf2(0)
d f ( t ) d t = e q w e , k f ( t ) = c − ∫ 0 t h 1 ( τ ) d τ − c ^ ( 0 ) \frac{df(t)}{dt} =e_qw_e, kf(t)=c-\int_{0}^{t}h_1(\tau)d\tau - \hat{c}(0) dtdf(t)=eqwe,kf(t)=c0th1(τ)dτc^(0),则可以得到:
h 1 ( t ) = − e q w e K h i , K h i ≥ 0 h_1(t)=-e_qw_eK_{hi},K_{hi} \geq 0 h1(t)=eqweKhi,Khi0
而对于上两式中的第二式,可以直接取 h 2 ( t ) = − K h p e q w e h_2(t)=-K_{hp}e_qw_e h2(t)=Khpeqwe即可保证不等式成立:
h 2 ( t ) = − K h p e q w e , K h p ≥ 0 h_2(t)=-K_{hp}e_qw_e,K_{hp} \geq 0 h2(t)=Khpeqwe,Khp0
因此,对于 c ^ \hat{c} c^的控制率可以选择:
c ^ = − K h i ∫ 0 t e q ( τ ) w e d τ − K h p e q ( t ) w e + c ^ ( 0 ) \hat{c}=-K_{hi}\int_{0}^{t}e_q(\tau)w_ed\tau - K_{hp}e_q(t)w_e + \hat{c}(0) c^=Khi0teq(τ)wedτKhpeq(t)we+c^(0)
即可保证误差系统满足Popov超稳定性条件。使用同样的方法,即可得到 a ^ 与 b ^ \hat{a}与\hat{b} a^b^的控制率如下:
a ^ = − K f i ∫ 0 t ( i d ^ ( τ ) e d ( τ ) + i q ^ ( τ ) e q ( τ ) ) d τ − K f p ( i d ^ ( τ ) e d ( τ ) + i q ^ ( τ ) e q ( τ ) ) + a ^ ( 0 ) b ^ = K g i ∫ 0 t ( u d ( τ ) e d ( τ ) + u q ( τ ) e q ( τ ) ) d τ + K g p ( u d ( t ) e d ( t ) + u q ( t ) e q ( t ) ) + b ^ ( 0 ) \hat{a}=-K_{fi}\int_{0}^{t}(\hat{i_d}(\tau)e_d(\tau)+\hat{i_q}(\tau)e_q(\tau))d\tau - K_{fp}(\hat{i_d}(\tau)e_d(\tau)+\hat{i_q}(\tau)e_q(\tau)) + \hat{a}(0) \\ \hat{b}=K_{gi}\int_{0}^{t}(u_d(\tau)e_d(\tau)+u_q(\tau)e_q(\tau))d\tau + K_{gp}(u_d(t)e_d(t)+u_q(t)e_q(t)) + \hat{b}(0) a^=Kfi0t(id^(τ)ed(τ)+iq^(τ)eq(τ))dτKfp(id^(τ)ed(τ)+iq^(τ)eq(τ))+a^(0)b^=Kgi0t(ud(τ)ed(τ)+uq(τ)eq(τ))dτ+Kgp(ud(t)ed(t)+uq(t)eq(t))+b^(0)

Note

值得注意的是,文献2中利用MRAS同时辨识出三个电机参数,但实际上系统模型的阶数仅为两阶,因此个人觉得应该是有些许错误,在实际仿真时也印证了这一点:只有两个参数时辨识才准确,若三个参数同时辨识,结果将不准确。

参考文献

  • [2] Quntao An and Li Sun, “On-line parameter identification for vector controlled PMSM drives using adaptive algorithm,” 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, 2008, pp. 1-6, doi: 10.1109/VPPC.2008.4677634.
  • [3] Xu Junfeng, Xu Yinglei, Xu jiangping, et al. “A new control method for permanent magnet synchronous machines with observer”, Aachen Germany: 35th IEEE Power Electronics Specialists Conference, 2004.

附录

  • matlab公式化简源码
clc;
clear all;
syms a b c A B C Ag Bg Cg e dltA dltB dltC i ig we id iq idg iqg ag bg cg e ud uq u real
A = [-a we;-we -a]
Ag = [-ag we;-we -ag]
B = [b 0;0 b]
Bg = [bg 0;0 bg]
C = [0;-we*c]
Cg = [0;-we*cg]
dltA = A - Ag
dltB = B - Bg
dltC = C - Cg
i = [id;iq]
ig = [idg;iqg]
e = i - ig
u = [ud;uq]
clc
-(dltA*ig + dltB*u + dltC)' * e
  • 9
    点赞
  • 51
    收藏
    觉得还不错? 一键收藏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值