Self-supervised Blind Motion Deblurring with Deep Expectation Maximization

本文讨论了一种基于双U-Net的图像去模糊技术,针对非均匀模糊情况。它模仿Self-Deblur方法,但使用全连接网络估计复杂模糊核。然而,研究指出所谓的EM算法实际上是简化版,且实验结果显示采样数1效果最佳,暗示理论推导可能并未充分利用,而是依赖于数据驱动的梯度下降。
摘要由CSDN通过智能技术生成

实际上就是模仿Double-DIP,用两个U-Net分别估计图像和模糊核。Self-Deblur也说了模糊核比较简单,所以用了全连接网络。这篇论文基本思想与Self-Deblur完全一致,只是降质模型是非均匀模糊,估计模糊核是多输出的。

所谓的EM算法,其实是伪的EM算法,并没有E步和M步迭代做什么,只是推导出一个 Q Q Q函数。而且实验结果又说采样数为1最好。这说明什么呢?一顿操作猛如虎,结果白推导(白努利)呗,最终还是数据保真项的梯度下降。

有些人真会讲故事,再加上reviewers中砖头太多。

### 回答1: 自监督学习(self-supervised learning)是一种机器学习的方法,通过利用输入数据本身的特征来训练模型。在自监督学习中,模型使用未标记的数据作为训练数据,通过预测输入数据中的某些特定信息来学习特征表示。这种方法通常用于处理大规模未标记数据的场景,如图像、语音和自然语言处理等领域,以提高模型性能和泛化能力。 ### 回答2: ### 回答3: Self-supervised(自监督学习)是一种基于无监督学习的技术,其目的是从无标签的数据中自动学习特征,并最终提高模型的性能。 与传统的有监督学习(Supervised learning)不同,自监督学习不需要手动标注数据。相反,自监督学习使用数据本身来生成标签。具体来说,该方法使算法在没有显式标签的情况下,从数据中发现统计关系,并将其用于训练模型的目的。这种方式也被称为“无监督特征学习”(unsupervised feature learning)。 自监督学习可以应用于许多领域,包括自然语言处理、计算机视觉、语音识别等。例如,在计算机视觉领域,自监督学习可用于学习对象的位置、姿态和形状。在自然语言处理中,自监督学习可以用于语言模型的训练,使得模型能从没有标注文本中预测下一个词语。 自监督学习的主要优点在于它可以使用大量未标记的数据,这种方法可以大大减少数据标签的成本,同时也可以提高模型的性能。但是,自监督学习的一些挑战在于选择合适的自监督任务,以及如何确保生成的标签准确地描述数据本身。此外,自监督学习的性能也受到算法的选择和优化策略的影响。当前,许多大型科技公司如Facebook、Google和微软等都在积极研究自监督学习的方法以用于其各项业务中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值