Self-supervised Blind Motion Deblurring with Deep Expectation Maximization

本文讨论了一种基于双U-Net的图像去模糊技术,针对非均匀模糊情况。它模仿Self-Deblur方法,但使用全连接网络估计复杂模糊核。然而,研究指出所谓的EM算法实际上是简化版,且实验结果显示采样数1效果最佳,暗示理论推导可能并未充分利用,而是依赖于数据驱动的梯度下降。
摘要由CSDN通过智能技术生成

实际上就是模仿Double-DIP,用两个U-Net分别估计图像和模糊核。Self-Deblur也说了模糊核比较简单,所以用了全连接网络。这篇论文基本思想与Self-Deblur完全一致,只是降质模型是非均匀模糊,估计模糊核是多输出的。

所谓的EM算法,其实是伪的EM算法,并没有E步和M步迭代做什么,只是推导出一个 Q Q Q函数。而且实验结果又说采样数为1最好。这说明什么呢?一顿操作猛如虎,结果白推导(白努利)呗,最终还是数据保真项的梯度下降。

有些人真会讲故事,再加上reviewers中砖头太多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值