实际上就是模仿Double-DIP,用两个U-Net分别估计图像和模糊核。Self-Deblur也说了模糊核比较简单,所以用了全连接网络。这篇论文基本思想与Self-Deblur完全一致,只是降质模型是非均匀模糊,估计模糊核是多输出的。
所谓的EM算法,其实是伪的EM算法,并没有E步和M步迭代做什么,只是推导出一个 Q Q Q函数。而且实验结果又说采样数为1最好。这说明什么呢?一顿操作猛如虎,结果白推导(白努利)呗,最终还是数据保真项的梯度下降。
有些人真会讲故事,再加上reviewers中砖头太多。