首先,滤波就滤波,为什么叫卷积?不就线性组合吗?
- 空域滤波是一种邻域或非局部处理。滤波最初是频域的概念。
- 由于频域乘积对应空域卷积,所以在空域就用卷积实现。
-
卷积也就是线性组合。
-
在图像处理中反转没必要,设计系数时转了就行,然后就成了互相关。实际理解也是模板匹配。mask和template中文都翻译为模板(掩膜的翻译不说人话),小的模板叫mask,大的就叫template。
-
卷积就这么来了。线性空域滤波与卷积有对应关系,不是空域滤波都能用卷积实现。但是非线性滤波也用滤波这个专业术语了。
附:模板匹配
卷积(Convolution)
定义:卷积是一种数学运算,它将两个函数(例如,一个信号和一个滤波器)合并成一个新的函数。在信号处理中,卷积通常用于对信号进行滤波,以改变信号的频率特性或去除噪声。在图像处理中,卷积常用于特征提取和边缘检测等任务。
与滤波、互相关的关系:
- 卷积操作涉及两个函数的相对位移和乘积的积分(或求和,对于离散信号)。
- 由于卷积定理表明,频域滤波等效于空域卷积,因此,滤波利用卷积实现。
- 然而在深度学习中,卷积神经网络(CNN)中的卷积操作通常是对输入图像和卷积核(即滤波器)进行滑动窗口的内积(也称为点积)求和,但这里的“卷积”实际上是互相关操作。这是因为卷积和互相关就差一个核的反转,网络直接学习滤波器,反不反转没有关系。另外,CNN中卷积层的实际意义正是互相关的意义。其实应该称为互相关神经网络。
滤波(Filtering)
定义:滤波是一种信号处理技术,用于改变信号的频率特性。滤波器是一种能够执行这种操作的电路或算法。滤波器的种类很多,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
与卷积的关系:
- 滤波器通常通过卷积运算与信号进行交互,以改变信号的频率特性。因此,卷积是滤波操作的基础。
- 在数字信号处理中,滤波器通常被表示成离散时间函数的形式,而卷积则是将信号与滤波器进行卷积运算的方法。
互相关(Cross-Correlation)
定义:互相关是两个函数之间的相似度度量,它描述了一个函数相对于另一个函数位移时的相似程度。在信号处理中,互相关常用于检测信号中的延迟或相似特征。
与卷积的区别:
- 卷积操作涉及滤波器的反转和位移,而互相关则不涉及滤波器的反转。
- 从数学上看,互相关可以看成两个函数之间的滑动内积,而卷积则是反转后的滑动内积。
在深度学习中的应用:
- 在深度学习中,尤其是在卷积神经网络中,由于卷积核通常不反转,因此实际的卷积操作是互相关。
内积(Inner Product)、点积
定义:内积是线性代数中的一个概念,它定义了向量空间中两个向量的点积。在函数空间中,内积可以定义为两个函数乘积的积分(或求和,对于离散函数)。
与互相关的关系:
- 互相关运算可以看作是在不同位移下对两个函数的内积。
- 在某些情况下,互相关可以表示为内积,即卷积核(互相关运算的核也称为卷积核)在信号上滑动时,每个位置的互相关值可以看作是该位置处信号与卷积核的内积。
总结
- 卷积与滤波 卷积是滤波操作的基础,它通过两个函数的相对位移和乘积的积分来合并这两个函数。
- 滤波与卷积 滤波用于改变信号的频率特性,通常通过卷积运算实现。
- 互相关与卷积 互相关和卷积的不同在于,不涉及滤波器的反转,常用于检测信号中的相似特征。
- 内积与互相关 内积是线性代数中的概念,用于度量向量之间的相似度,互相关运算可以看作是在不同位移下对两个函数的内积。