知识萃取 | 理论 / 实践

注:本文为 “知识萃取” 相关文章合辑


知识萃取:隐性知识如何显性化?

王健
中国航空制造技术研究院

科研项目知识是军工单位的核心知识来源之一,在科研项目进行过程中存在着一部分未被科研人员察觉的隐性知识流失,一定程度上影响了科研成果的产出质量和速度。

因而研究科研项目隐性知识显性化模式尤为必要,知识萃取可推进知识的传承与复用,对提升科研成果转化效率意义深远。

科研工作是知识密集型工作,学科综合,创新性强。

其对创新的要求高于一般项目,预先研究、型号研制、装备试用评价等研究阶段都蕴含着科研人员丰富的显性知识和隐性知识,产出物为理论创新成果或应用于实践的技术成果。部分科研项目需要运用多学科的知识和技术来激发创造力。

科研项目对技术要求较高,通常是研制周期长、环节多的复杂项目,需要跨单位联合研制,协作管理复杂。科研项目知识资源主要来自内外部获取的专业文献、标准与信息等,大多集中在研究成果方面,过程隐性经验极具价值,需要显性化。

基于行业保密性特征,部门墙、专业墙的客观存在,科研项目间可能出现“重复发明轮子”的现状,造成人力、时间、设备等资源的投入浪费。

及时将科研项目隐性知识显性化并传递复用,利于科研人员少走弯路,可加快项目进度,提升研发效率。科研项目团队中核心员工退休和离职,可能带来隐性经验的流失。及时对科研项目工作经验和失败教训等有效识别、梳理、归纳、总结、分类和存储,利于缩短新人的培训成长周期,避免知识的流逝和断层。

同时,大量极具价值的隐性知识(技能、经验等)都隐藏在科研项目的实施过程中,是激发创新的主要力量。运用知识萃取的方法,通过对各阶段的隐性知识进行识别、共享和利用,能帮助科研人员在立项、技术方案选择、项目过程分析、任务分派时做出更好的决策。

知识萃取的相关方法

1. SECI 模型

日本野中郁次郎和竹内弘高在合著的《创造知识的企业:领先企业持续创新的动力》中提到,知识是通过显性知识和隐性知识之间的相互作用而创造出来的,基于以上假设,提出知识转化的四种模式(SECI模型),如图1所示。

图片

(1)社会化(Socialization,从隐性知识向隐性知识转化)。指通过共享经验创造隐性知识的过程,产生共情知识,如共享心智模式和专业技能。即隐性知识可以通过观察、模仿和实践等社会化方式实现个体间隐性知识转化,如学徒制中,徒弟凭经验、模仿和实践学会师傅的手艺。

(2)外显化(Externalization,从隐性知识向显性知识转化)。指隐性知识表述为显性概念的过程,产生概念性知识。即隐性知识通过比喻、类比、概念和假设或模型的形式来显性化表达。

(3)组合化(Combination,从显性知识向显性知识转化)。指将各种概念系统化为知识体系的过程,产生系统性知识。即通过整理、增添、组合和分类等方式对不同的显性知识重新配置,系统化为新的显性知识。如企业收集员工传递的显性知识后对其加工整理,最终浓缩提炼为企业的核心知识。

(4)内隐化(Internalization,从显性知识向隐性知识转化)。指将显性知识体现到隐性知识的过程,产生操作性知识。内隐化与“做中学”密切相关。如员工将获取的显性知识应用于实践,通过个人的亲身体验,内化为个体的新隐性知识(掌握新的技术诀窍)。内隐化作为知识持续发展的基础,通过与显性知识不断动态地相互作用来形成组织知识创造。

2. 联想复盘

联想公司将复盘思想引入企业管理,即在事件完成后展开事件回顾演练、检验和校正目标,分析过程中的得失,深化认识和总结规律,最终提炼存储为组织知识资产,指导或应用于后续事件。

联想复盘模式主要分为四个步骤:一是事件完成后回想最初的目的、要达成的目标和里程碑;二是分析评估完成的结果,观察实际完成目标与最初目标的差异,提炼亮点和不足;三是从主观与客观层面上分析成功关键因素和失败根本原因;四是总结经验与教训,基于分析和结论,拟定对应的行动计划(确认需新开展的工作和继续进行的工作,暂停和淘汰没有价值的工作)。

3. 事后回顾(AAR)

事后回顾(AAR:After Action Review)最早是美国陆军所采用的一项任务完成后的检视方法,通过对已发生的项目、行动和事件进行反思学习,总结经验教训,改进不足,维持优势,以提升下一次团队表现。AAR方法倾向于短平快的即时性团队任务。

在事后回顾的具体实践中,所有参加者在完成一项重要项目后聚集在一起,讨论四个重要问题:

一是原定的任务与目标是什么;二是实际发生了什么情况;三是为什么会发生这些情况;四是下次我们将怎么做。在回答问题的过程中萃取经验,并视情况将相关经验显性化为学习资料、管理制度或规范,以提升整个组织的战斗力。

知识萃取的实施步骤

1. 识别需求,明确知识萃取具体任务

根据组织战略、业务、项目、管理、员工反馈等渠道收集需求,并通过四象限分析法识别出当前关键需求。四象限分析法将横坐标定义为能获取的收益高低,将纵坐标定义为实施的难易程度,从右上角至左下角画弧分为“优先发展、充分关注、等待机会、最后考虑”四个区间,如图2所示。优先解决实施难度低但收益高的需求(需求2),其次是实施难度较收益比相对容易的需求(需求3)。

图片

围绕需求,明确知识萃取的需求背景、现状、涉及的岗位或人群,并描述知识萃取任务。即科研人员通常在哪些情况下会遇到问题,具体指什么问题,一般会如何解决问题或者询问谁能得到帮助。如果解决的效果不理想,再分析基于以上背景需要从哪些方面萃取相应知识来改进,保证下次能顺利规避或解决相同问题。

2. 确定目标、对象及计划

(1)资料收集与解读。根据任务描述,收集尽可能详尽的素材,包括但不限于科研项目背景、项目情况介绍、立项方案策划、实施方案、验收方案、成果鉴定等过程文档,以及项目总结等。

(2)确定目标。基于任务描述,解读相关资料,分析科研项目痛点和难点,以及期望达到的目标。

(3)确定对象和计划。根据科研项目需解决的问题,确定需访谈的专家、骨干员工等。并结合痛点问题、人员协调、资料收集与解读的难易程度,制订初步计划。

3. 实施过程

该阶段可借鉴SECI模型、联想复盘、事后回顾等模型方法,依据工作计划,进行项目经验(或教训)的深度挖掘和萃取。

在进行项目回顾时,需要对不同的项目负责人或项目成员进行访谈,访谈方式可采用开放性的行为回顾探索方法,如行为事件访谈法,如表1所示。即针对某一情景,选择在当时情境下表现优秀和表现一般的员工为访谈对象分组访谈,并对比分析访谈结论,以观察识别导致表现出现差异的关键行为特征,继而演绎成某事件的解决方法。

图片

4. 成果整理提炼

该阶段对实施准备及过程中获取的素材消化吸收并提炼加工,最终萃取出有用的内容,比如以解决某个问题或完成某项任务为导向形成以流程规范指引为重点的模板,如表2所示;或形成以经验教训萃取为重点的模板,如表3所示。

图片

图片

5. 成果转化

在完成科研项目隐性知识萃取后,一方面考虑将其融入流程、规范指南中,并录入知识库,供科研人员参考和应用;另一方面对知识成果进行宣传、推广,例如项目回头看、年度培训计划、专业研讨会等,确保科研项目知识能够共享至合适的群体,通过借鉴应用让知识价值最大化。

四条具体实践建议

1. 规范隐性知识获取流程

隐性知识通常隐藏在业务流程中,不易被察觉,需在流程中显性化以指导工作开展。

一是识别关键流程节点。对科研项目进行工作任务分解和梳理,将产生核心知识的关键流程节点识别出来,制定常态化机制,规范过程性成果提交动作,利于将可能遗漏的隐性知识显性化出来。

二是设计科研项目常用知识场景。梳理并萃取典型业务场景中知识点或知识点需求,形成知识检查表,帮助科研人员查漏补缺,及时更新知识。

三是编制隐性知识源分布图。引导员工有意识地识别工作过程中可能产生的隐性知识,并总结存储。

2. 提高知识萃取信息化效率

借助先进的信息化工具和技术来提高知识萃取效率。

一是搭建知识共享平台,构筑科研项目知识共享网络。集成知识库,建立知识交流社区,实现专家和员工双向交流,在问答过程中充分挖掘分享的经验、优秀做法。同时设置专员,根据不同技术专业特点,建立专业性主题模块,定期梳理热点话题,整合为知识专辑,在社区范围内共享。

二是自定义知识模板。知识模型是知识抽象,是知识显性化的基础。利用知识工程软件系统,依据不同知识对象和属性特点,设计不同知识模板,引导员工对关键知识按照模板进行显性化表达,提升知识萃取效率。

三是让数据发声。在大数据时代下,引用数据挖掘技术,基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,揭示数据背后隐藏的具备潜在价值的知识。

3. 营造知识共享文化氛围

一是建立一套完善、合理的激励机制。量化员工知识贡献,满足知识贡献者利益需求,激发其隐性知识显性化内生动力。可采取以下措施:提供物质性报酬激励,给予奖金或奖品;提供成长性事业激励,给予人才进修(优先培训资格)或晋升资格加分;提供精神性荣誉激励,给予行政嘉奖或知识冠名等。

二是组织多样化知识运营活动。在活动中激发员工知识共享热情,沉淀知识内容,如开展科研项目案例挖宝活动、知识问答活动、“谁是科研大牛”比赛,知识热点专题活动等。

4. 助力科研隐性知识显性化呈现和共享

一是及时沉淀交流中产生的隐性经验。科研项目实施过程中,组织开展头脑风暴、学术交流、报告讲座等活动,使科研人员脑中的经验得以表达,并形成相关记录共享至相关人员。二是及时更新流程知识库,包括但不限于科研项目实施过程相关的经验教训、重要问题的解决思路与方法、关键步骤、参考标准等,避免科研团队重复花费时间解决类似问题。■


企业知识萃取理论与实践研究

吴庆海
行者互联科技(北京)有限公司 北京 100083

摘要:[目的/意义] 随着企业对组织知识内容质量的要求越来越高,研究知识萃取方法,推动组织知识的挖掘、加工、提炼,提升组织知识复制、推广、应用水平,具有重要的意义。[方法/过程] 通过研究知识萃取相关学术文献及产业实践,对知识萃取概念进行辨析,提出知识萃取PREFS®过程方法及STAR®内容模型,并且应用到企业实践中进行实证检验。[结果/结论]知识萃取工作对于企业知识管理非常必要,知识萃取PREFS®过程方法及STAR®内容模型具有实战价值。通过知识萃取,不仅能将组织最佳实践通过萃取转变成可以传承组织智慧的知识产品,而且可以作为抓手推动组织知识管理策略实施或拓展。

关键词: 知识萃取 经验萃取 PREFS®过程方法 STAR®内容模型 知识管理

分类号: G250

作者简介: 吴庆海(ORCID: 0000-0003-3289-905X)博士,E-mail: wuqinghai74@qq.com

收稿日期:2016-05-13 发表日期:2016-07-05 本文责任编辑:王铮

近年来,企业界关于组织知识萃取与经验萃取的提法开始增多。这主要来自于两个领域的推动:一个是教育培训界,一个是知识管理界。前者对于经验的萃取源于培训课程以及相关教学案例的开发;而知识管理界素来有知识加工、知识提炼、知识收割的理念和传统,随着强化业务导向、关注内容质量等诉求的出现,知识萃取的提法也开始涌现。本文对目前出现的相关典型模型和方法进行了梳理,提出知识萃取PREFS®过程方法及STAR®内容模型,并通过在企业里的实战应用进行验证和完善。

1 知识萃取的研究背景

1.1 学术研究综述

以知识萃取作为核心研究对象,选取中国知网(CNKI)中国学术期刊网络出版总库作为数据来源,检索题名或者关键词含有 “知识萃取”“经验萃取”“知识加工”“知识提炼”“知识收割” 的文献。检索式为:TI=“知识萃取”+“经验萃取”+“知识加工”+“知识提炼”+“知识收割” OR KY=“知识萃取”+“经验萃取”+“知识加工”+“知识提炼”+“知识收割”。删除重复文献和不相关文献,最后得到 30 篇有效文献,并绘制可知识萃取文献数量年度分布图(见图 1),文献的时间跨度为 1979 年 - 2015 年。从图 1 可见关于知识萃取的研究并不多,通过文献分析,发现有关研究主题或与现代教学与学习有关 [1],或与技能培训有关 [2],这都是教育培训界的研究成果。知识管理界鲜有人提及知识萃取,早期虽有人涉足 [3],但其中并无知识萃取的实质内容。最近有研究者开始就知识提炼、知识构建等进行研究 [4],这无疑是一个很好的征兆。

img

图1 知识萃取文献数量年度分布

1.2 产业实践现状

在企业实践应用中,关于项目总结、案例开发、经验提炼、专题研究、工作总结、报告撰写、专利分析等工作都需要将过程中的隐性知识进行挖掘提炼,将过程中的显性知识进行整理加工,最终形成可以推广复制、借鉴应用的高质量知识产品,并以文字、声音、图像等方式呈现出来。上述过程的方法体系及最终的知识交付件,都具有很高的价值,以致有许多研究者和实践者专门钻研传授其中的方法,开发出不同的课程并撰写出相关的书籍。国内比较有代表性的有李文德的 “组织经验提炼” 课程、宋洪波的 “组织经验萃取” 课程、刘百功的 “组织经验萃取与高效课程开发” 课程、王兴权的 “萃取组织最佳实践” 课程、张立志的 “萃取知识五步法” 课程等。他们基本上都是培训讲师出身,所讲内容也多是从培训管理、课程开发等角度切入。

目前从知识管理领域切入该领域的还比较少见,但由于知识管理先天包含知识加工、知识提炼、知识收割等环节,许多知识管理从业者往往在实践中不自觉地用到了相关的方法,也逐步开始对知识萃取的方法进行思考和总结。例如邱昭良撰写了专著《复盘 +:把经验转化为能力》[5] 并开发了相应的课程。笔者也曾以 “企业知识萃取方法及其实务操作” 为主题,在一些微信群朋友圈做过分享,引起了广大从业者的热烈讨论和积极思辨。

1.3 知识萃取相关概念辨析

萃取本来是个化学概念,是利用物质在互不相溶的溶剂中溶解度不同,用一种溶剂把溶质从另一种溶剂中提取出来的方法 [6] 。例如将碘水与四氯化碳或苯混合、摇匀,之后蒸馏得碘晶体。萃取是有机化学实验室中用来提纯和纯化化合物的手段之一。通过萃取能从固体或液体混合物中提取出所需要的物质。

知识萃取,顾名思义就是从大量数据、信息、文本、经验中,通过合适的方法和工具,将精华的知识抽取提炼出来的过程(见图 2)。在 IT 领域,知识萃取是指从结构化数据或者非结构化数据中提取出可以被机器阅读与理解的新知识内容,与自然语言处理中的信息抽取类似。现阶段知识萃取的概念范畴在实践过程中已经被逐渐扩大,包含了对隐性知识及显性知识的整合、加工及提炼。对经验的挖掘提炼是隐性知识显性化的过程,对文档的整理加工是显性知识标准化的过程。

img

图2 知识萃取概念示意

以经验为例,经验指人们在同客观事物接触过程中获得的关于客观事物的现象和外部联系的认识。经验从何而来?经验从问题的发现和解决中来,经验从超前的探索中来。经验往往是现象背后的本质,常以“原因”的形式出现,是之所以成功的理由,它反映出事物的某种规律性的联系。经验往往以隐性知识的方式存在人们的大脑里,如果通过知识萃取将经验进行显性化,形成案例沉淀下来,则更容易被传承借鉴,并创造更多的价值。

2 知识萃取方法与模型

2.1 典型方法与模型

目前业界已经有一些与知识萃取相关的方法及模型,知名的有联想复盘、美国事后回顾(after action review,AAR)、华为知识收割、日本野中郁次郎 SECI 模型、上海韬钰咨询的 ERMS 模型等。下面对前 3 种侧重实际操作的典型方法作简要的分析。

(1)联想复盘。“复盘” 源于围棋术语,在联想逐步演变为企业文化中重要的方法论之一 [7] 。联想认为复盘是最好的学习方式。工作做完了,还需要把工作重新回顾演练一遍,不断检验和校正目标,分析过程中的得失,不断深化认识和总结规律。这种工作方法从柳传志时代一直延续至今,已经成为联想内部的一个标志性方法。联想复盘分为如下 4 步: 回顾目标;‚ 评估结果;ƒ 分析原因;„ 总结规律。按照复盘模板(见图 3),在每一个步骤中,只要按模板的要求进行填空就可以运用操作了。

img

图3 联想复盘模板

(2)美国 AAR。AAR 是知识管理 “事前学、事中学、事后学” 中一个重要的步骤。AAR 最早是美国所采用的一项任务后的检视方法。美国对 AAR 的定义为:对一事件的专业性讨论,着重于表现标准,使参加者自行发现发生了什么、为何发生及如何维持优点,并改进缺点 [8] 。

美国在进行 AAR 的时候,通常会问自己如下 4 个重要的问题 [8] : 原定的任务与目标是什么?‚ 实际发生了什么情况?ƒ 为什么会发生这样的情况? 下次我们怎么办?在回答问题的过程中,进行经验萃取,并且视情况将相关的经验形成美国 ** 的管理制度或规范,上升成为整个组织的战斗力。

(3)华为知识收割。在国内知识管理领域,最近两年华为的知识收割做法开始逐渐得到关注。但是市面上很少见到介绍华为知识收割的文章,只有在一些公开分享场合偶然听到华为知识管理人士介绍他们的实践做法。具体而言,华为的知识收割主要针对组织内部项目,包括如下内容:一是经验收割(Retrospect 会议),一是文档收割(价值文档整理)。前者重隐性知识,后者重显性知识,两者并重,共同构成华为知识收割的重要部分。

华为知识收割有其固定的套路和流程。主要分为如下 4 个步骤:

选择项目:首先需要识别组织能力的短板,并根据组织能力短板选择重点关注的知识收割项目,即从战略高度上进行项目知识收割的优先级排序;

单个项目知识收割:确定好知识收割的具体项目后,须要先进行筹备,明确目标和范围,确定知识收割组织人员、参与人员及其他资源等。之后需要通过召开Retrospect会议、文档收割会议等方式,引导人员对项目中的隐性知识、显性知识进行系统收割,整理出最终的收割内容后,进行审核及存储;

组织资产刷新:在确定组织知识资产的刷新范围后,组建团队将项目收割到的经验和文档批处理上传刷新到华为的知识库中,从而正式变成组织的知识资产;

知识传递:最后还需要确定新上传知识资产潜在的适用目标范围及对象,由知识管理人员主动组织一些知识传递活动,确定知识传递方式,从而确保这些新的知识能够被传递给合适的人群。

2.2 知识萃取PREFS®过程方法

基于上述模型,在实践的基础上,笔者提出了知识萃取相关的方法及模型,其中 PREFS® 方法强调知识萃取的过程(见图 4)。整个流程包括如下 5 个步骤:

img

图4 知识萃取PREFS®方法论

(1)规划设计(Plan)。做知识萃取不应该盲目地做,而是需要根据组织内战略、业务、项目等要求,进行有目的的规划和选题。然后根据组织内的资源、人力等条件进行匹配。在企业内部进行知识萃取,可以按照 5-15-80 原则进行优先级排序:即战略级知识萃取可占 5%,战术重点级可占 15%,其他通用级可占 80%。对于具体选择的知识萃取项目,在确定目标范围后,可以准备启动。这个阶段,还需要收集萃取目标尽可能详尽的素材,包括但不限于背景材料、情况介绍、过程文档、项目总结等。

(2)复盘回顾(Retrospect)。这个阶段可以通过讲述、访谈、回顾、现场采风、集体研讨等多种方式,尽可能地通过回顾还原当时的场景,发掘其中的原因和规律。这个阶段非常重要,最好有一个具有丰富知识萃取经验的资深人员带队,以第三方客观的视角对当事人、当事情景进行复盘,同时对于其中经验、教训等进行深度挖掘。在进行回顾时,既需要对不同的当事人进行单点接触采访,也需要组织集体研讨和对话来激发参与者之前没有明示的想法。这个环节可借鉴联想复盘、美国 AAR、华为知识收割等方法。对于知识萃取带队人,需要有较高超的引导技术和咨询功底,这样才能通过深度对话,引发当事人的共鸣和联想,从而挖掘萃取出更多 “干货” 出来。

(3)提炼加工(Extract)。这个阶段需要对前面收集的基本素材进行消化,同时对复盘回顾阶段获取的一手材料进行分析,然后通过提炼加工,最终萃取出有用的内容。这个阶段最考验文字撰写能力和抽象提炼能力,需要能够很快形成最终知识交付物产品的框架及思路,撰写文稿及视频大纲、脚本等。这个阶段可以参考麦肯锡金字塔原理来锤炼思考、写作和解决问题的逻辑,也可以借鉴同行总结的一些方法,例如张立志提出的 “找共性、看差异、挖实质、要拔高、成模型” 五步法等。

(4)制板成型(Form)。这是知识萃取交付物成品成型产出的阶段。通过上述各个步骤,最终萃取的知识通过文字以报告、手册、宝典、案例等方式呈现出来,或者以音频、视频、虚拟现实等多媒体互动方式呈现出来。在互联网新经济时代,随着人们对于多媒体的接受程度不断提高,知识萃取工作者也需要与时俱进。如何通过视频、虚拟现实等现代化的方式寓教于乐,让更多的人愿意接受信息并深入学习和理解,目前还处于探索阶段。

(5)螺旋上升(Spiral)。当上述知识产品交付后,知识萃取并非就结束了。第一版本不见得尽善尽美,需要以工匠精神,对知识萃取交付件不断进行优化,通过迭代完善实现螺旋上升。同时,知识萃取者还需要以市场人员的思路,主动思考该知识产品的目标人群和应用范围,对知识产品进行设计、包装、宣传、推广,让更多的人知道、理解它,通过借鉴应用让知识产品价值最大化。

2.3 知识萃取 STAR® 内容模型

知识萃取 P R E F S ® PREFS^{®} PREFSR 方法重在过程,但真正通过提炼加工,形成最终交付知识产品时,是否有好的参考模型得到很多人的关注。在确定知识产品内容框架结构时,笔者经常会用到 STAR® 内容模型。由于其通用性比较强,在此做重点描述。

所谓 S T A R ® STAR^{®} STARR 内容模型,即按照如下的框架结构组织内容的撰写:

(1)Situation(情境)。对历史环境与当前情境的描述。具体可包括背景介绍(例如社会背景、行业背景、组织背景、故事背景、当时情景等)、动因(问题、痛点、现状、历程等)。启发性问题有:当时的情况怎样(时间、地点、人物、背景)?是什么原因导致这种情况发生的?有什么人涉及其中?周围的情形怎样?

(2)Target(目标)。即明确、聚焦的目标。具体可包括相关愿景、使命、目标、规划、任务等。启发性问题有:当时有什么任务?目的或目标是什么?达成任务的挑战和难度?面对任务时人物的心情?

(3)Approach(途径)。完成目标采用的途径、方法、方案等。需要有生动的案例演绎及具体的直观示范,具体可包括相关实践(例证、故事、机制、IT、激励、组织、工具、表格、模板)、团队介绍、领导寄语等。启发性问题有:对当时情况有何反应?实际上做了或说了什么?采取的主要行动步骤和行动细节?这样做的原因?有什么经验和教训?

(4)Results(结果)。最终产生的结果以及具有启示与价值的说明。具体可包括相关的价值、效果、反馈、数据、收获、反思、改变等。启发性问题有:采取行动后的直接结果是什么?产生了什么样的影响?是否有效和适当?

当然,按照上述 S T A R ® STAR^{®} STARR 框架进行内容撰写时,可以适当地进行变通。例如开头可添加导读,结尾可添加总结。也可加一些关键词作为知识萃取交付物的标签(tag),或者标示其分类、可应用范围、适用人群等。Results(结果)后还可以添加 “未来畅想” 环节内容,撰写对未来发展的展望及设想等内容。还可以添加 “专家点评” 环节内容,邀请资深专家给予客观评价,启发读者思考,做延展性阅读。

笔者曾组织多家公司众包撰写丛书《知识 + 实践的秘密》 [9] ,其中每个企业的知识管理案例就采用了 STAR® 内容模型,取得了一定的实际应用效果。

3 知识萃取的应用案例分析

关于知识萃取的实际应用案例,笔者以自己服务过的组织 —— 中粮集团标杆管理办公室的对标项目案例知识萃取实践来进行重点说明和验证。

3.1 项目背景介绍

作为企业级组织变革,标杆管理是中粮集团最重要的管理方法和工具之一。中粮集团从 2012 年开始推行标杆管理,历经启动、深化、扩展等阶段,目前进入全面系统推进阶段。中粮集团标杆管理始于对标评价考核,在经过标杆管理培训、启动对标项目、基于对标确定年度预算目标、建设标杆数据库、建立对标工作坊等重要里程碑事件后,更加强调竞争性对标和落地,同时把对标工作融入日常的工作之中。通过标杆管理,能够帮助组织建立系统,以一种完整的思维方法推动组织重新审视、改善各项工作,追求极致,让组织更有智慧。

2015 年启动的对标优化项目超过 200 个,每个项目的周期大约 8 个月。诸多项目各个阶段过程性文档及关键里程碑重要交付文档分散在各个项目经理手中,项目中的许多经验并没有很好地被总结。项目组一旦解散,经验就难以成为组织级的知识资产。但是如何对这些对标优化项目进行知识萃取,并没有专门的经验。以前标杆管理办公室作过标杆管理项目案例集,但是效果并不好,没有进行有效的传播和应用。

针对这些问题,笔者与标杆管理办公室推进负责人一起探讨解决方案。该负责人曾经说 “世界一流企业特质中,其中有一条是‘任何业务领域的最佳实践,能够在组织内快速复制’”。对于中粮各个经营单位通过对标项目产生的最佳实践,如何通过知识萃取进行深度发掘,并在组织内得到有效传播及应用,无疑是破题的关键所在。为此经过商议,从目前已经完成结项的对标改善项目之中,选择若干优秀的对标改善项目,进行知识萃取,形成标杆案例,并以文字稿、微视频等方式进行展现。

3.2 知识萃取过程

在前期工作的基础之上,笔者于 2015 年 12 月 - 2016 年 3 月期间,带团队深入一线,使用知识萃取 PREFS® 过程方法及 S T A R ® STAR^{®} STARR 内容模型,支持标杆管理办公室进行相关对标项目的知识萃取。

综合考虑对标项目的战略示范意义、项目收益指标、未来可复制拓展性,经过与标杆管理办公室筛选,最终确定了黄海粮油 “提升豆粕水分、蛋白控制能力”、中粮贸易 “优化玉米事业部应收账款周期” 以及中粮贸易 “战略部落实推进标杆管理” 等 3 个项目来进行知识萃取。

团队组建方面,笔者搭建了以知识萃取项目负责人、文稿撰写顾问、视频拍摄制作人员为核心的知识萃取专业服务三人组。同时要求标杆管理办公室协调具体对标项目的项目经理、项目成员、项目倡导者、高层管理者、辅导顾问老师等不同角色人员,共同参与到知识萃取联合项目组中。

项目团队发现要完成一个对标项目的知识萃取,最短需要 2 周的时间。知识萃取的交付物(即最终的知识产品)主要有两个:一个是文字稿(平均大约 1 万字),一个是微视频(平均大约 6 分钟)。

在具体操作过程中,实际上花费的时间往往比预想的要长。如果对标项目涉及项目干系人比较多,这一特点尤为明显。其实这非常容易理解,主要的原因是预约项目干系人的时间往往很难集中,这必然造成战线拉得过长,因此要有一定的心理准备。如果排除这些因素,单纯看知识萃取专业服务团队的服务,其平均人天如下:①现场调研及访谈等:3.0 人 x 3 个工作日;②文字稿整理及写作:1.5 人 x 7 个工作日;③微视频拍摄及制作:1.5 人 x 10 个工作日。

在完成知识萃取后,将最终交付的知识产品放在不同的场合(例如管理年会、专业研讨会、高层汇报会)进行宣传和推广时,均取得了很好的反馈。例如中粮黄海 “提升豆粕水分、蛋白控制能力” 项目是在原有生产控制水平已经很高的基础之上,依然选择挑战自己的极限能力。经过系统的思考和设计,通过 6 个快赢改善和 7 个改进方案,实现能够按照实际工况精确控制豆粕水分蛋白比例,从而超额完成了原定的目标,每年增加经济收益 490 万元。同时,该案例的经验对于其它豆粕、饲料、大米、DDGS、啤麦牙等农产品加工涉及蛋白、水分含量精确控制的生产都适用,因此对同类工厂具有极大的推广复制效应。

通过标杆管理对标项目的案例挖掘,笔者发现知识萃取工作是非常有必要的,体现在其有效性、系统性及可推广性。知识萃取有效地提取项目关键因素,分析项目重要节点,并系统地凝练经验、沉淀知识、形成知识产品,为更广泛地应用于同质、同类的项目打好基础。

3.3 项目未来展望

完成标杆管理对标项目的知识萃取试点项目后,比较以前的案例总结方法方式,无论在案例深度上,还是案例宽度上,项目参与者都有了新的认识和理解。

在案例深度上,通过采用视频方式,汇总多人视角观点等,让案例展现的形式更加生动多样;同时通过使用 PREFS® 过程方法、 S T A R ® STAR^{®} STARR 内容模型等,让经验提炼的结果更加专业全面。在案例宽度上,对其价值的认识不应仅仅局限在萃取最佳实践方面,应强调传播最好做法,匹配最适情景,并助力业务成功;同时不仅仅只锁定对标优化项目本身,而应该将目光更多放在紧密连接人员、连接业务、连接专家等。

此外,对于标杆管理未来的中长期构想,除了继续就对标项目进行知识萃取外,还可以以案例为主要抓手和突破点,结合项目、课程等关键业务场景,构建知识管理大平台(见图 5)。知识管理作为地基工程,将成为冰山下的坚实底座,逐步让个体知识向组织能力转化,再从组织能力向组织智慧迈进。

img

图5 知识管理大平台拓展策略

4 结束语

通过在实践中应用知识萃取PREFS®过程方法、STAR®内容模型等,笔者体会到知识管理借此可以逐步深入到业务层面,提炼出有价值的知识“干货”,这是对业务直接的贡献和价值。新时代要有新做法,通过微视频等方式展现知识萃取成果,将是越来越多组织必然的选择。同时,人员知识萃取能力将凸现出其专业价值,如何培养知识萃取方面的专业人才和服务能力,将成为未来热点方向之一。好的内容更需要加强运营,酒香也怕巷子深,对高品质知识进行推广应用则需要花费更大的精力。由此看来,针对知识萃取,从理论到实践方面都急需突破。如果我们能够打造出知识萃取相关著述、培训、咨询,实施“一条龙”服务,那么新的专业服务蓝海领域将横跨教育培训、知识管理两界,向我们直面走来。

参考文献

[1]杨志.广义隐性知识萃取与学习的研究[J].湖南社会科学,2015(1):210-213.

[2]周岩.知识萃取在技能培训中的应用[J].科技与企业,2014(24):27.

[3]庄淇铭.知识管理之萃取与建构研究[D].新北:淡江大学,1995.

[4]姜永常.知识构建中基于Web2_0综合集成的知识提炼与应用[J].图书情报工作,2014,58(21):116-123.

[5]邱昭良.复盘+:把经验转化为能力[M].北京:机械工业出版社,2015.

[6]百度百科.萃取[EB/OL].[2016-04-10].http://baike.baidu.com/

[7]柳传志.复盘是最好的学习方式[J].中国人力资源开发,2013(24):11.

[8]徐纪罡.知识管理成功实施“两部曲”[J].中国信息界(e制造),2014(7):55-57.

[9]吴庆海,王猛,夏敬华.知识+实践的秘密[M].北京:世界知识出版社,2015.

The Study on Theory and Practice of Enterprise Knowledge Extraction

引用格式:吴庆海.企业知识萃取理论与实践研究[J/OL]. 知识管理论坛, 2016, 1(4): 243-250 [引用日期]. http://www.kmf.ac.cn/p/1/36/.


via:

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值