Uniform User Interface for Semiautomatic Parking Slot Marking Recognition
Abstract
自动停车系统包含三种技术:1)目标位置指定;2)路径规划;3)路径跟踪。目标定位-设计方法可分为四类:1)基于用户界面;2)基于车位标识;3)空间的基础;4)基于基础设施。本文设计的方案是手动标出车位点。
INTRODUCTION
具体流程如下所示:输入两个点,用神经网络检测第一个角点的类别,第二个角点的类别,然后来分类,根据结果得出4个点。
REGION OF INTEREST SETTING AND JUNCTION PATTERN CLASS RECOGNITION
ROI Establishment by Two Seed Points and Bird’s-Eye View Image Construction
Neural-Network-Based Junction Pattern Class Recognition
由于结点图案是在黑暗的地面上用浅色绘制的,形状范围有限,因此可以用三层神经网络对其进行分类。ROI鸟瞰图原为二维矩阵,按字典序转换为一维数组,送入输入层。输出层有对应于8个连接模式类的节点。
JUNCTION PATTERN LOCALIZATION AND TARGET POSITION ESTABLISHMENT
Binarization
一般情况下,由于车位标记是在较暗的地面上用浅色绘制的,因此校正后的图像可以分为两个区域:1)车位标记区域和2)地面区域。然而,由于车辆下方的阴影和沥青纹理模式,很难从实际的室外图像中提取出与停车位标记相对应的区域。采用强度直方图聚类的方法:将强度直方图过度聚类成簇,将最亮的聚类作为车位标记的像素。
Localization by Template Matching With Skeleton
该连接模式是通过搜索使二进制图像的骨架和类模板之间的重叠最大化的最优转换来定位的。
为了度量它们在数量上的重叠程度,使用骨架的距离变换(DT)。转换的误差定义为构建类模板的线段上的平均DT值,该线段通过转换进行转换并与骨架的DT重叠。当模板与骨架完全重叠时,以这种方式定义的转换错误将为0,并且随着模板与骨架不匹配而增加。因此,将结点模式定位问题转化为误差最小化问题。该方法采用遗传算法(GA)解决了这一问题。
Target Position Establishment
一旦识别了目标停车入口两侧的连接模式,就可以相应地建立目标位置。对于不包括菱形在内的四种类型,可以通过将矩形目标位置的外侧置于连接两种结型中心点的直线上,并将矩形的侧边中心点置于两种结型中心点上来建立目标位置,在菱形类型的情况下,目标位置的矩形不满足连接两个结点图案中心点的直线,相反,两个连接模式中的一个中心指向的点不再使用:如果连接模式是6,那么用左边的店,如果是7,然后是用右边的点,连接一个结点的线及其投影的直线与两个结点图案的方向正交。