报告分享 | 大语言模型安全和隐私研究综述

大语言模型的强大能力和广泛应用引发了大量的相关研究,尤其是其在安全和隐私方面所带来的问题。本报告以 2024 年发表在《High-Confidence Computing》期刊上的一篇综述论文为核心,介绍大语言模型安全和隐私研究概况。

1 背景和动机

大型语言模型(Large Language Model,LLM)是具有大量参数且执行预训练任务(例如,掩码语言建模和自回归预测)的语言模型,它通过对来自大量文本数据的语义和概率进行建模,来理解和处理人类语言。例如 ChatGPT 和 Bard,已经彻底改变了自然语言的理解和生成,它们拥有深厚的语言理解能力、文本生成能力、上下文意识和解决问题的能力,广泛应用于搜索引擎、客户支持、翻译等诸多领域。

有许多 LLM 在 2023 年开发并发布,非常受欢迎。著名的例子包括 OpenAI 的 ChatGPT,MetaAI 的 LLaMA,Databtick 的 Dolly。LLM 在安全界越来越受欢迎,截至 2023 年 2 月一项研究报告称,GPT-3 在一个代码存储库中发现了 213 个安全漏洞(只有 4 个被证明是假阳性)。相比之下,市场上领先的商业工具只检测到了 99 个漏洞。最近,一些由 LLM 驱动的安全论文出现在了著名的会议上。例如 2023 年的 S&P 会议,Pearce H.等人进行了一项商用 LLM 的调查,表明大模型能够成功解决安全漏洞环境下的代码合成场景。2024 年的 NDSS 会议,Fuzz4All 工具展示了使用 LLM 对输入数据的生成和变异,创新了一种自动提示技术和模糊测试循环。

这些显著的初步尝试促使深入研究三个与安全相关的关键研究问题:

  • 问题 1:LLM 如何对不同领域的安全和隐私产生积极影响?
  • 问题 2:LLM 会对网络安全领域产生哪些潜在的风险?
  • 问题 3:LLM 自身有哪些漏洞和弱点,如何抵御这些威胁?

为了全面解决这些问题,综述进行了细致的文献回顾,收集了 281 篇关于 LLM 与安全和隐私相关的论文。将这些论文分为三组

  • The Good:那些强调 LLM 有利于安全的文献
  • The Bad:那些探索利用 LLM 破环安全的文献
  • The Ugly:那些关注讨论 LLM 自身漏洞的文献

2 大语言模型

大语言模型代表了语言模型的演变,最初的语言模型在本质上是基于统计学的,为计算语言学奠定了基础,Transformer 的出现大大增加了它们的规模。这些模型在大量的数据集上经过了广泛的训练,以理解和产生模仿人类语言的文本,由此在自然语言处理领域取得了许多实质性的进展。根据 Yang 等人的研究,一个 LLM 应该至少有 4 个关键特征。

  1. 理解能力。模型应该展示对自然语言文本的深刻理解,能够提取信息并执行各种语言相关的任务(如翻译)。
  2. 提示生成。模型应该有能力在提示时生成类似于人类习惯的文本。
  3. 上下文意识。模型应该通过考虑领域专业知识等因素来表现出上下文意识。
  4. 问题决策。模型应该擅长利用文本段落中下信息来解决问题和做出决策。

此外,该研究还整理了大语言模型的发展演化树,根据时间轴进行了阶段划分,按模型采用的不同框架进行颜色标记,同时还区分了开源和闭源项目,标注了发布机构,如图 1 所示。

### 关于大语言模型安全威胁及防御措施的综述 #### 安全威胁概述 大型语言模型(LLMs)面临多种类型的攻击,这些攻击旨在促使 LLMs 生成有害、有偏见或有毒的内容。恶意行为者可能会利用特定输入来操纵模型输出,造成不良后果[Brown2020; Ouyang2022][^3]。 #### 攻击方式分析 常见的攻击手段包括但不限于: - **对抗样本**:精心设计的输入数据,使得模型产生错误分类或其他异常反应。 - **毒化攻击**:通过污染训练集中的部分样本来影响整个系统的性能。 - **隐私泄露**:当模型被询问敏感话题时可能出现个人信息暴露的风险。 - **误导性信息传播**:诱导模型发布虚假新闻报道或者其他形式的事实扭曲内容。 针对上述提到的各种攻击方法所带来的挑战,研究界已经意识到需要开发有效的防护机制以确保AI系统的安全性与可靠性。 #### 对抗策略探讨 为了应对以上提及的安全隐患,目前主要采用了基于强化学习的人类反馈(RLHF)来进行模型对齐的方法。这种方法不仅能够提高模型对于不当请求识别的能力,而且还能增强其遵循社会伦理准则的表现。具体来说,通过对大量人类标注的数据进行迭代优化,使机器学会区分哪些问题是不应该回答或是应该谨慎处理的。此外,在实际部署过程中还需要考虑实施严格的访问控制以及定期审查更新等辅助措施来进一步加固系统屏障。 ```python def align_model_with_feedback(model, feedback_dataset): """ 使用人类反馈调整模型参数 参数: model (Model): 待调整的大规模预训练语言模型实例. feedback_dataset (Dataset): 包含正负样本标签的人机对话记录集合. 返回: aligned_model (Model): 已经过安全对齐后的改进版模型对象. """ # 实现具体的RLHF算法逻辑... pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值