- 博客(298)
- 资源 (30)
- 收藏
- 关注
原创 生成式AI-医学影像专刊论文合集(2022-2023)(二)
在这里,我们提出了一种基于有效的浅层3D投影的后上采样网络,用于脑部MRI的各向异性SR。我们的模型可以按需生成完全合成的脑部标签,包括感兴趣的病理和非病理,并生成对应的任意风格的MRI图像。此外,我们提出了通过估计潜在向量之间的相关系数矩阵并利用它来关联随机抽样的元素,从而在VAE的潜在空间中建模2D切片之间的关系,并将其解码为图像空间。在这项工作中,我们提出了一种新颖的基于前景的生成方法,用于模拟局部病变特征,既可以在健康图像上生成合成病变,又可以从病理图像中合成个体特异性的伪健康图像。
2024-01-31 17:27:54
1417
原创 医生究竟会不会被AI替代
虽然现有技术还有限制和挑战,但随着技术的不断发展,AI会向着更加成熟、精准和可靠的方向发展。因此,我们认为,AI不是医生的替代品,而是医生的重要辅助工具。医生仍然需要发挥专业知识和判断力,将AI算法的结果与患者的具体情况相结合,制定最佳的治疗方案。其次,AI算法还需要考虑许多复杂的因素,如病人的个体差异、患病类型的多样性以及医学影像的复杂性等。此外,AI算法还需要提供可靠的预测结果和解释性,以便医生能够理解算法的决策过程。然而,尽管存在这些限制,AI在医疗领域中的应用仍有很大的潜力。
2024-01-31 17:26:58
949
原创 生成式AI-医学影像专刊论文合集(2022-2023)(一)
在测试中,我们仅从 T2 MRI 中生成的合成血管分割的平均 Dice 得分为 0.79 ± 0.03,与最先进的分割网络(如 transformer U-Net(0.71 ± 0.04)和 nnU-net(0.68 ± 0.05))相比,只使用了一小部分参数。我们展望,由于生成图像质量的提高,我们的新数据集的实用性将扩展到病变检测以外的其他问题。我们的研究表明,同时使用合成数据和真实数据进行训练的效果优于仅使用真实数据进行训练的效果,而且仅使用合成数据训练的模型接近仅使用真实数据训练的模型。
2024-01-31 17:15:32
1472
原创 从三维图像中抽取2D样本进行训练-MONAI实战
从三维图像中抽取样本进行2D网络训练-MONAI实战在医学影像分析的任务中,有时需要从三维(3D)图像数据中提取二维(2D)样本进行训练。这是因为2D卷积神经网络可以更方便地处理和分析2D数据,而且使用2D样本可以减少训练时间和计算成本。然而,从3D数据中提取2D样本并不是一件容易的事情。本教程向您展示如何使用 3D inputs 中采样2D样本训练网络。这是一个完整的2D分割教程,包含数据生成,预处理,训练以及推理主要用到的功能函数:monai的和进行2D切片的抽样。以及在推理中使用将2D切片分割后再组合
2024-01-31 17:10:28
2396
原创 SCI 2区论文:医疗保健中心训练有素的脑膜瘤分割模型的性能测试-基于四个回顾性多中心数据集的二次分析
背景:CNN在磁共振成像脑膜瘤分割方面取得了最先进的结果。然而,从不同机构、协议或扫描仪获得的图像可能会显示出显着的域转移(domain shift),从而导致性能下降并在实际临床场景中挑战模型部署。客观的:本研究旨在调查训练有素的脑膜瘤分割模型在不同医疗保健中心部署时的实际性能,并验证增强其泛化能力的方法。方法:这项研究在四个中心进行。2015 年 1 月至 2021 年 12 月期间,共有 606 名患者进行了 606 次 MRI 入组。
2024-01-19 22:07:03
1088
原创 2024年MIA最新生成综述:基于深度学习的MRI/CT/PET合成【文献阅读】
由于复杂且非线性的域映射,两种图像模态之间的转换存在困难。与传统图像合成方法相比,基于深度学习的生成建模在合成图像对比应用中表现出更好的性能。本调查全面回顾了2018年至2023年期间基于深度学习的医学图像转换在伪CT(pseudo-CT)、合成MR(synthetic MR)和合成PET(synthetic PET)方面的研究。我们概述了最常用的用于医学图像合成的深度学习网络。此外,我们对每种合成方法进行了详细分析,重点关注它们基于输入域和网络架构的多样化模型设计。
2024-01-12 18:44:38
3231
1
原创 使用 MONAI 加载和保存各种格式的医学图像
本教程属于实战,手把手教你加载各种医学图像数据(nii.gz, .dcm, .png等)。并学会查看医学图像数据的元数据(shape, affine, orientation)。学会使用monai全方位了解你的数据,并把它用于之后的深度学习训练。以及学会保存transform处理后的图像以及分割结果。干货很多,动手跟着一起来。查看本教程前,请自行下载,边跑代码边看教程,学习效率更高哦。
2024-01-08 00:47:24
2943
原创 使用monai.visualize.utils.matshow3d函数展示3D医学图像
函数是 MONAI 包中用于可视化 3D 图像数据的一个实用工具函数。它可以在平面中显示一个或多个3D图像,并提供一些参数来控制显示的方式和外观。先导入需要的包例如我们显示1个大小为10x10x10的图像再比如我们显示2个大小为10x10x10的图像接下来,我们再以真实的CT腹部图像案例,来学习一些更高阶的用法。
2024-01-07 17:51:43
897
1
原创 全面解析MONAI Transforms的用法 视频+教程+代码
MONAI是一个基于PyTorch的开源框架,用于医疗影像的深度学习,属于PyTorch生态系统的一部分。建立一个学术、工业和临床研究人员合作的共同基础社区;创建用于医疗影像的最先进的端到端训练流程;为研究人员提供优化和标准化的方式来创建和评估深度学习模型。在MONAI中,transform是可调用对象,接受来自数据集中初始数据或先前transform 的输入。我们可以直接创建和调用这些transform,而无需进行任何基础设施或系统设置,因为MONAI中的组件设计尽可能解耦。
2023-12-18 16:30:37
1901
原创 使用MONAI时,如何选择合适的Dataset加载数据,提升训练速度!
在深度学习中,MONAI(Medical Open Network for AI)是一个专注于医学图像分析的开源框架。它提供了一系列用于医学图像处理和深度学习的工具和函数,其中包括了Dataset函数。Dataset函数是MONAI框架中的一个重要组件,它用于加载和管理医学图像数据集,并提供了数据增强、预处理和批处理等功能。
2023-12-06 14:07:07
1148
原创 使用MONAI轻松加载医学公开数据集,包括医学分割十项全能挑战数据集和MedMNIST分类数据集
为了快速开始使用公开的数据集(如 MedNIST 和 DecathlonDataset),MONAI 提供了几个开箱即用的函数(例如),其中包括数据下载,解压以及创建dataset(继承了MONAI 的 CacheDataset,训练的时候数据加载的嘎嘎快)。预定义数据集的常用工作流程:本次以为例,说明如何在MONAI中使用这些数据,并简要介绍这些数据集。
2023-11-22 00:13:50
1832
原创 Radiology 谈人工智能在放射学领域的10个预测方向 [文献阅读]
人工智能(AI)和信息学正在改变放射学。十年前,没有哪个专家会预测到今天放射人工智能行业的蓬勃发展,100多家人工智能公司和近400种放射人工智能算法得到了美国食品和药物管理局(FDA)的批准。不到一年前,即使是最精明的预言家也不会相信这些算法可以创作诗歌,赢得美术比赛,并通过医学委员会的考试。现在,当我们庆祝我们专业的旗舰期刊《Radiology》成立一百周年时,这些成就已经成为我们的现实。令人畏惧的转型时刻可以使我们解放思想,梦想更大。基于此,以下是关于放射学中人工智能和信息学未来的10个预测。
2023-11-15 22:08:06
697
1
原创 将随机数设成3407,让你的深度学习模型再涨一个点!文再附3种随机数设定方法
深度学习已经在计算机视觉领域取得了巨大的成功,但我们是否曾想过为什么同样的模型在不同的训练过程中会有不同的表现?在对10000个种子的扫描中,作者获得了接近2%的最大和最小精度差异,这高于计算机视觉社区通常使用的重要阈值。答:是,它当然减少了由于使用不同种子而产生的差异,但并没有抹去这种差异,在Imagenet上,最大和最小准确度之间的差异仍然有0.5%这么长的代码,每次都要敲一遍,或者粘贴复制也很麻烦。下面进行简单地分析。
2023-11-14 00:14:24
1803
1
原创 在医疗影像领域,生成式模型可以做些什么?用什么平台快速实现?使用MONAI框架进行生成式模型开发
生成模型具有巨大的潜力,不仅有助于通过合成数据集安全地共享医疗数据,还可以执行一系列逆向应用,如异常检测、图像到图像翻译、去噪和MRI重建。然而,由于这些模型的复杂性,它们的实现和再现性可能很困难。对于我这种代码能力薄弱的研究者,需要有医学数据相关的现成代码借鉴参考,才能做实验。这时候,必须要大赞一下MONAI平台啦。提供了各种相关的模型和demo。
2023-11-09 08:43:37
711
2
原创 简单2招GET模型参数量计算和输入尺寸随卷积大小变化推导
本文将介绍两种简单且实用的方法,用于计算深度学习模型的参数量,并推导了输入尺寸随卷积大小的变化过程。这些方法可以帮助读者更好地理解模型的复杂度和输入尺寸的变化,为模型设计和优化提供指导。比如论文中,通常会比较几种模型的参数量又比如在设计模型时,需要确定我们的输入尺寸大小是否合适,以及想经过每个卷积层后尺寸的变化。我们想看到下面的信息👇基本上每个项目我都会过一遍这些信息,更好的掌握模型。
2023-11-06 21:45:39
406
原创 不会写代码也能搞AI?医生和科研人员的福音——AI科研平台
科研平台的兴起为医生和不会写代码的科研人员提供了更加便捷和高效的途径参与人工智能和深度学习的研究。随着科研平台的不断发展和完善,我们有理由相信,越来越多的医生和科研人员将能够借助这些平台,为医学领域的人工智能应用贡献自己的力量。当然,你看不到的参数肯定就是不可调的,比如你看不到gpu的使用情况,你也不知道提供多大的算力。:提供手动标注(可以调用本机的3d slicer),也可以在平台上标注,平台的标注功能带了AI模型,比如腹部器官他可以自动识别,如果你要标注这些器官那很简单。当然也是允许手动上传的。
2023-10-12 17:44:27
759
2
原创 三行命令搞定nnUNet v2训练及推理!
通过前面2小节的学习,我们配好了环境,准备了数据。现在开始你的训练之旅~~同 V1 一样,一行命令搞定你的数据预处理,训练和测试!!。
2023-09-03 20:35:53
8630
12
原创 nnUNet v2数据准备及格式转换 (二)
如果你曾经使用过nnUNet V1,那你一定明白数据集的命名是有严格要求的,必须按照特定的格式来进行命名才能正常使用。这一节的学习需要有数据,如果你有自己的数据,可以拿自己的数据来实验,如果没有,可以用十项全能数据集,在之前分享过,这篇文章里有数据集的下载地址和方法。如果网络问题下载不下来,可以微我。
2023-09-03 18:38:54
4247
1
原创 全网都在用的nnUNet V2版本改进了啥,怎么安装?(一)
nnUNet,这个医学领域的分割巨无霸!在论文和比赛中随处可见他的身影。大家对于nnUNet v1版本的教程都赞不绝口,因为它简单易懂、详细全面,让很多朋友都轻松掌握了使用方法。最近,我也抽出时间仔细研究了nnUNet v2,并全程走过一遍流程。我努力将使用教程变得更加通俗易懂,希望能提高大家的学习效率。如果你正在进行分割任务,或者还没有尝试过nnUNet v2,那么现在是时候跟着我一起学习啦!我们将一步步解析nnUNet v2的改进之处和操作步骤,用简洁明快的语言让你轻松理解。
2023-09-03 18:01:46
3414
3
原创 如何在Linux中强制关闭卡住的PyCharm
在使用PyCharm进行Python开发时,有时可能会遇到卡顿或无响应的情况。当PyCharm卡住时,我们需要强制关闭它以恢复正常操作。今天,我们将介绍在Linux系统中如何强制关闭PyCharm的几种方法。
2023-08-11 22:10:50
9084
原创 Bland-Altman LOA:衡量测量方法一致性的统计分析方法,也可用来做分割评价指标
Bland-Altman LOA(Limits of Agreement)是一种用于评估两种测量方法一致性的常用统计分析方法。在医学研究和临床实践中,我们经常会面临不同测量方法之间的比较和评估问题。为了确定两种测量方法是否能够得出相似的结果,我们需要考虑它们的一致性。Bland-Altman LOA是一种流行的统计分析方法,它提供了一种直观且易于理解的方式来评估两种测量方法的一致性。今天在看一篇深度学习分割文献的时候,突然看到这个指标,用来评估 AI 模型分割结果和专家修正后的差别。
2023-07-18 18:06:15
4259
1
原创 【最全】如何不写代码将 Dicom 图像转 Nifti 格式, 7种工具任你选!
dcm2niix 是一款由NTRC团队开发的医学图像转换工具,用于将数字成像与通信(DICOM)格式的医学图像转换为更加通用的神经影像学信息交换(NIfTI)格式。该软件直接读取磁共振成像(MRI)和计算机断层扫描(CT)数据,并把它们转换为 NIfTI 格式。除此之外,dcm2niix 还能够处理其他信息,例如医院信息化系统(HIS)中的元数据、图像方向和标签等。NTRC 团队还开发了MRICron软件,这是一款 NIfTI 格式的看图软件,而且它可以方便地调用 dcm2niix 进行图像转换。
2023-06-18 20:46:29
3659
1
原创 深度学习用于医学预后-第二课第四周大作业-使用 Cox 比例风险和随机生存森林估计原发性胆汁性肝硬化患者的生存风险
使用 Cox 比例风险和随机生存森林估计原发性胆汁性肝硬化患者的生存风险欢迎来到第二门课程的最终作业!在这个作业中,你将使用生存数据以及线性和非线性技术开发风险模型。我们将使用一个包含原发性胆汁性肝硬化(pbc)患者的生存数据集。PBC 是一种由于肝内胆汁积聚(胆汁淤积)导致小胆管受损并排出肝内胆汁的疾病。我们的目标是了解不同因素对患者的生存时间的影响。
2023-05-29 11:58:03
4043
2
原创 深度学习用于医学预后-第二课第四周21-23节-使用Harrell C-Index评估生存模型(实例)
恭喜你完成了这门课程的最后一周。本周,你学习了如何基于患者档案构建和评估个性化的生存预测模型。你学习了Cox比例风险模型和生存树等生存模型,可以利用患者变量来获取患者特定的风险。你还学习了如何使用Harrell’s C-index来评估生存数据上的生存模型。在你的最后一项任务中,你将有机会将所有这些概念应用到实际数据中,建立一个预测住院患者死亡率的生存模型。我也是第一次接触预后模型,很多概念对我来讲都是新的。这部分只是我的一个学习笔记,当遗忘的时候可以翻出来看看,快速回忆。当然,也希望对你有用。
2023-05-23 23:32:48
437
原创 深度学习用于医学预后-第二课第四周18-20节-使用Harrell C-Index评估生存模型
在本课程中,您将学习如何使用Harrell Concordance Index来评估生存模型的性能。在之前,您已经计算过常规的Concordance Index(C-index)。现在您将学习当您处理生存数据时如何修改这个计算方法。这个最终工具将允许您评估您所学到的生存模型。在本课中,我们将讨论使用Harrell C-Index评估生存模型的方法。我们已经看到了评估预后模型的设置。之前我们在研究一个10年内死亡的风险,我们会为死亡率在10年内的结果是"是"或者"否",并通过模型输出风险分数。
2023-05-22 23:46:21
600
原创 深度学习用于医学预后-第二课第四周16-17节-比较两个患者的风险
因此,我们分组进行累积风险的计算,假设这4人都在A组,得到他们的累积风险,同样地,得到他们在B组的累积风险。现在我们有了这八个值,我们可以做的是将每一列相加,得出死亡危险评分,它是一个单一的值,它使我们能够比较两名患者的风险。因此,我们可以看到,在所有时间点,蓝色患者的累积风险都高于橙色患者的累积危险。在这里,我们看到很多事件发生在20到33之间,在我们关心的这个区域,比较两名患者的风险,也就是说图中黑色线条区域,在这个区域,橙色的患者风险更高。我们将使用的关键思想是:我们观察到人群死亡时的累积风险。
2023-05-21 17:17:03
349
原创 深度学习用于医学预后-第二课第四周13-15节-使用生存数的非线性风险评估模型
记住,我们可以用(t)来表示每个时间点的风险,或者我们可以用累积风险来表示,或者用生存函数来表示,因为它们是可以互换的,在这个特殊的例子中,我们关注的是累积风险。因此,我们的目标是能够解决这个问题,如果我们有一个由患者组成的人群,我们应该为该群体中的不同类型的人提供不同的风险函数。我们看到我们可以建立这些线,可以把病人分类,他们在适当的风险类别中,我们有低风险,和高风险类别,我们提出了作为我们决策树的一部分。在公式中,我们看到患者的风险是基础风险率乘以一个因素,这个因素是由他们的变量决定的。
2023-05-21 14:27:38
547
原创 深度学习用于医学预后-第二课第四周5-12节-为个体患者制定风险评估模型
例如,如果我们有一个 50 岁的吸烟者,我们可能会认为他的风险与一个年轻的不吸烟的病人有很大的不同,而年轻的不吸烟的病人又与一个年长的不吸烟的病人有很大的不同。我们看到了比例风险模型,其中风险是基线风险乘以由患者协变量决定的某个因素,这里需要注意的一点是,让我们看看当所有协变量,所有变量,等于0时会发生什么。当然,我们不会有年龄为零且不吸烟的病人,通常我们的年龄会大于零,但这告诉我们当我们有一个来自患者协变量的1的因素时基线危险会是什么样子。因此,如果所有的变量都等于零,病人的风险和基线风险是一样的。
2023-05-17 23:08:10
620
原创 深度学习用于医学预后-第二课第四周1-4节随堂作业
作业名:C2_W4_lecture.ipynb作业地址:github --> bharathikannann/AI-for-Medicine-Specialization-deeplearning.ai --> AI for Medical Prognosis --> Week 4首先我们来看一下哪些特征是分类特征?在这个小样本数据集中,“腹水”、“水肿”和“分期”是分类变量在分类变量中,哪一个应该进行 one-hot 编码(变成虚拟变量)?让我们看看当我们对“阶段”特征进行one-hot编码时会发
2023-05-17 23:05:08
455
原创 深度学习用于医学预后-第二课第四周1-4节-使用线性和基于树的模型构建风险评估模型
今天起进入到第四周课程的学习,使用线性和基于树的模型构建风险评估模型。
2023-05-17 23:04:02
513
原创 预测生命,预防风险:生存分析中涉及的关键概念解读-生存函数、风险函数和累积风险函数
在生存分析中,生存函数、风险函数和累积风险函数是非常重要的概念。通过对这些概念的理解和使用,我们可以研究人或物体在不同时间点上的存活、死亡或其他事件发生的概率,并揭示影响这些概率的各种因素。在实践中,我们还可以使用Kaplan-Meier方法、Cox回归等统计方法来分析数据,得到更深入的结论。文章持续更新,可以关注微信公众号【医学图像人工智能实战营】获取最新动态,一个关注于医学图像处理领域前沿科技的公众号。坚持已实践为主,手把手带你做项目,打比赛,写论文。凡原创文章皆提供理论讲解,实验代码,实验数据。
2023-05-16 23:59:08
8548
1
原创 深度学习用于医学预后-第二课第三周大作业-淋巴瘤患者生存分析实战:使用 Kaplan-Meier 方法进行数据分析
欢迎来到课程二的第三个作业。在这个作业中,我们将使用Python来构建一些统计模型,这些模型是我们上周学到的,用于分析。我们还将评估这些模型并解释它们的输出。
2023-05-16 19:17:44
735
原创 生存分析利器:Python 中的 Kaplan-Meier Fitter 类详解
是lifelines库中用于计算生存分析的一个类。使用KaplanMeierFitter类,我们可以对我们的数据进行不同组之间的生存分析,比如根据年龄、性别、治疗手段等分类变量进行分组分析。该类包含许多方法和属性,其中最常用的是fit()方法和plot()方法。
2023-05-16 19:09:58
3348
1
原创 深度学习用于医学预后-第二课第三周14-15节-评估方法比较以及Kaplan-Meier估计
我们还研究了如果我们可以访问数据中的真实事件发生时间会发生什么情况,虽然这通常是不可能观察到的,但在这个假想的场景中,我们可以联系患者并找出事件发生的时间。因此,如果你想告诉人群中任何患者的预后或生存概率,我们只需在给定的时间,比方说50,查询当时的生存概率或y值,就可以知道两个人群中患者的生存概率的差异。因此,我们所做的是,我们能够使用生存数据来表示种群,我们根据这些数据建立了Kaplan-Meier生存模型。我们可以看到,我们的新估计(基于链式法则)更接近于真实估计,比我们两个极端观测得到的更接近。
2023-05-15 19:26:38
457
原创 深度学习用于医学预后-第二课第三周8-13节-估计生存函数
上节课知道了数据中存在删失数据,那么我们如何利用这些数据建立生存函数。这将是本节课的重点内容。本节课,我们将学习估计生存函数。回想一下我们看过的病人生存模型。对于这些病人,生存模型会告诉我们生存函数,也就是S(t),可以用上图来表示,在每个时间点,我们可以知道生存概率是多少。生存概率,记住,就是某个事件发生的时间在某个小t之后的概率,这个小t可以是1年,可以是5年,可以是10年,无论我们关心的是什么时间。我们研究了生存数据,对于生存数据我们有一组病人我们以时间的形式收集了结果信息。我们将使用这种形式的
2023-05-15 17:18:37
535
原创 Pandas中的逻辑运算符(与或非)及Python代码示例
Pandas是Python中一个非常流行的用于数据处理和分析的库,它提供了大量的函数和操作符,以便用户可以方便地对数据进行操纵。坚持已实践为主,手把手带你做项目,打比赛,写论文。然后,它使用逻辑运算符选择所有年龄大于50岁且收入大于100,000美元的人,并将结果存储在变量“result”中。在这个例子中,我们选择了所有年龄小于20或大于50岁的人,并将结果存储在变量“result”中。上面的代码使用“~”运算符来对原始条件进行否定,以选择所有不是美国公民的人,并将结果存储在变量“result”中。
2023-05-15 16:10:53
2697
原创 【深入浅出】条件概率的链式法则:定义、公式与应用
在概率论的研究中,条件概率是一种非常重要的概念。当多个随机事件发生时,我们有时需要考虑它们同时发生的概率。条件概率的链式法则就是一种用于计算多个随机事件同时发生的概率的方法。本文将会介绍条件概率的链式法则的定义、公式以及应用。条件概率是指在已知某一事件发生的条件下另一个事件发生的概率。例如,设 A 和 B 是两个随机事件,其中 B 发生的条件下 A 事件发生的概率为 P(A|B),则称为事件 A 在事件 B 成立的条件下的条件概率。
2023-05-15 15:36:13
5135
1
原创 深度学习用于医学预后-第二课第三周4-7节-关于事件的时间数据,认识处理删失数据
在本课中,我们将讨论生存数据。为了能够对生存进行建模,我们需要能够以我们可以处理的形式表示数据。主要的挑战是删失数据,这是一种特殊形式的缺失数据。我们接下来将要研究这一点。在这节课中,我们将谈论生存数据和删失。之前当我们研究预后模型时,我们会问一个问题,过去五年的生存概率是多少?我们有如下格式的数据我们有一群患者,之前我们使用1表示该患者有事件,0表示该患者可能在五年内没有事件。这就是我们使用的数据。请注意,这里的关键是我们需要的答案/结果基本上是肯定的或否定的(1或者0)
2023-05-14 22:39:54
585
原创 数据预处理--sort乱序DICOM文件
我们直接从PACS系统里拷贝下来的图像,很多情况下是乱序的,随机命名的。如下图从这个文件夹名字,我们只知道患者的 ID 信息,不知道这个图像是什么模态(CT/MRI/Xray),也不知道扫的是哪个部位,平扫还是增强,层厚是多少等等信息。这些信息都只有用专业DICOM查看软件才能知道因此,推荐在做一切预处理前,先把这些文件 sort 一下,根据自己需要的信息重命名文件夹。这里我们只需要借助一个开源代码,,就可以迅速 sort 啦,而且速度非常快。
2023-05-01 16:45:16
1207
1
Task09_Spleen.zip
2021-02-07
MedNIST.zip
2021-02-05
英雄联盟所有英雄数据
2019-01-06
王者荣耀技能加点建议(mysql数据库文件)
2018-07-17
王者荣耀召唤师技能(mysql数据库文件)
2018-07-17
王者荣耀所有皮肤(mysql数据库文件)
2018-07-17
王者荣耀英雄所有技能(mysql数据库文件)
2018-07-17
王者荣耀英雄关系(mysql数据库文件)
2018-07-17
王者荣耀所有英雄(mysql数据库文件)
2018-07-17
王者荣耀所有铭文(mysql数据库文件)
2018-07-17
王者荣耀推荐装备(mysql数据库文件)
2018-07-17
王者荣耀所有装备(mysql数据库文件)
2018-07-17
王者荣耀所有英雄的json文件
2018-07-17
活鱼眼教程代码2
2018-04-03
活鱼眼教程代码
2018-04-03
基于matlab体绘制技术的医学影像三维重建
2018-02-07
基于体绘制的头部三维重建,并用matlab界面展示结果
2018-02-07
用机器学习算法对UCI上的三个数据集做预测
2018-02-07
使用粒子群算法求解最优问题
2018-02-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人