研究生考试
文章平均质量分 95
仙魁XAN
作为技术及管理人员,精通VR/AR/MR 3D开发,擅长使用Unity、Three.js、Laya等平台,开发创新的游戏、家具设计、教育和工业仿真应用。
在游戏开发中,带领团队创造沉浸式体验,提供创新玩法和引人入胜的故事情节。家具设计上,通过AR技术,为用户提供新颖的家居体验。
教育领域,负责开发交互式教学应用,提升学生学习兴趣和理解力。工业仿真项目中,运用VR技术优化产品设计和生产流程,提高效率。
还涉足人工智能,开发智能化应用,提供个性化服务。凭借技术与管理能力,期待与合作伙伴共同开发创新项目,创造卓越数字体验。
展开
-
【软件工程】数据流图/DFD概念符号/流程图分层/数据字典
在需求分析阶段 , 使用的工具 , 在“结构化分析”中 , 数据流图 ( DFD ) 使用频率很高;基本概念符号 ,数据字典 ,数据平衡原则;原创 2023-08-09 22:02:06 · 6384 阅读 · 0 评论 -
【海量数据挖掘/数据分析】之 K-Means 算法(K-Means算法、K-Means 中心值计算、K-Means 距离计算公式、K-Means 算法迭代步骤、K-Means算法实例)
① 给定条件 :给定数据集 X , 该数据集有 n 个样本;将其分成 K 个聚类;③ 聚类分组要求 :每个聚类分组中 , 所有的数据样本 , 与该分组的中心点的距离之和最小;将每个样本的与中心点距离计算出来 , 分组中的这些距离累加 , K 个分组的距离之和 也累加起来 , 总的距离最小;①设置中心点 :设置了 3 个初始中心点 , A1(2,4) 对应聚类 1 中心点 , B1(5,8) 对应聚类 2 中心点 , C1(6,2) 对应聚类 3 中心点;②计算中心点距离。原创 2023-07-07 08:17:39 · 27241 阅读 · 0 评论 -
【海量数据挖掘/数据分析】之 决策树模型(决策树模型、决策树构成、决策树常用算法、决策树性能要求、信息增益、信息增益计算公式、决策树信息增益计算实例)
【海量数据挖掘/数据分析】之 决策树模型(决策树模型、决策树构成、决策树常用算法、决策树性能要求、信息增益、信息增益计算公式、决策树信息增益计算实例)一、决策树模型1、常用算法2、属性划分策略3、其他算法三、决策树算法性能要求四、 决策树模型创建 ( 递归创建决策树 )1 、 决策树模型创建2 、 决策树创建算法 ( 递归 )3 、 递归操作4 、 递归停止的条件五、 决策树 树根属性 选择六、信息增益 说明1、 熵 和 信息 的数据组成2 、 信息增原创 2023-07-04 23:21:09 · 9712 阅读 · 1 评论 -
【海量数据挖掘/数据分析】之 贝叶斯信念网络(贝叶斯信念网络、有向无环图、贝叶斯公式、贝叶斯信念网络计算实例)
P ( 有 高 血 压 ∣ 有 高 血 脂 , 有 家 族 史 ) P ( 有高血压 | 有高血脂 , 有家族史 ) P(有高血压∣有高血脂,有家族史) 表示同时有家族史 和 高血脂 时 , 有高血压的概率。③ 概率表中没有 P ( 有 高 血 压 , 有 家 族 史 , 有 高 血 脂 ) P( 有高血压 , 有家族史 , 有高血脂 ) P(有高血压,有家族史,有高血脂) 概率 , 需要计算。= P(有家族史)×P(有高血脂∣有家族史)×P(有高血压∣有高血脂,有家族史)原创 2023-07-04 08:19:08 · 2936 阅读 · 0 评论 -
【海量数据挖掘/数据分析】 之 K-NN 分类(K-NN、K-NN实例、准确率评估方法、准确率、召回率)
K-NN 全称是 K-Nearest Neighbors , 即 K 最近邻 算法;② 定义 :给定查询点 p , 找出离 p 最近的 K 个点 , 找出所有的 qk 点 , qk 点的要求是 点到 p 的距离 小于其第 k 个邻居的距离;③ 理解方式 :以 p 点为圆心画圆 , 数一下圆内 , 和圆的边上的点是由有 K 个 , 如果个数不足 K 个 , 扩大半径 , 直到圆边上和园内的点的个数大于等于 K 为止;原创 2023-07-03 22:50:44 · 2508 阅读 · 0 评论 -
【海量数据挖掘/数据分析】 之 贝叶斯分类算法(朴素贝叶斯分类、贝叶斯分类计算流程、拉普拉斯修正、贝叶斯分类实例计算)
【海量数据挖掘/数据分析】 之 贝叶斯分类算法(朴素贝叶斯分类、贝叶斯分类计算流程、拉普拉斯修正、贝叶斯分类实例计算)一、 贝叶斯分类器1 . 贝叶斯分类器 :2 . 贝叶斯分类器的类型 :3 . 正向概率 与 逆向概率 :4 . 贝叶斯公式 : 有两个事件 , 事件 A , 和事件 B ;二、 贝叶斯分类器处理多属性数据集方案三、 贝叶斯分类器分类的流程 四、拉普拉斯修正五、贝叶斯分类器示例六、 朴素贝叶斯分类器使用七、 朴素贝叶斯分类的优缺点原创 2023-07-03 08:09:43 · 7755 阅读 · 1 评论 -
【海量数据挖掘/数据分析】 之 关联规则挖掘 Apriori 算法 (数据集、事务、频繁项集、关联规则、支持度、置信度)
Apriori 算法 是关联规则挖掘算法 ,关联规则 反映了对象之间 相互依赖关系 ,可以通过 一个对象 的行为或属性 预测 其它对象的行为或属性;关联规则不是 因果关系, 有可能有因果关系 , 有可能没有;如 : 购买商品时 , 啤酒 与 尿布 就有关联关系 , 这两个之间肯定没有因果关系 , 有一种未知的关联关系;关联规则挖掘步骤 :① 步骤一 : 找出 支持度 ≥最小支持度阈值的 频繁项集;② 步骤二 : 根据 频繁模式 生成 满足可信度阈值的 关联规则;原创 2023-07-02 16:47:46 · 19367 阅读 · 2 评论 -
研究生考试 之 计算机网络第七版(谢希仁) 第一章 课后答案
继续教育 提升自身能力与学历。本节 简单介绍继续教育学习中,在学习计算机网络时候,每一章的课后答案的整理,以方便后期查看,这里的答案有误,还请不吝指出,答案提供参考,如果你更好的答案也可以留言,多谢。答: 数据长度为 100 字节的数据传输效率: 100/(100+20+20+18) =63.3%;数据长度为 1000 字节的数据传输效率: 1000/(1000+20+20+18) =94.5%。( 1) 数据发送速率为 10Mbit/s, 数据分组可以连续发送。原创 2023-04-23 19:20:20 · 2731 阅读 · 0 评论