【Paper Reading】6.RLHF-V 提出用RLHF的1.4k的数据微调显著降低MLLM的虚幻问题

本文提出RLHF-V框架,通过细粒度人类反馈和密集直接偏好优化(DDPO)减少多模态语言模型的幻觉问题,显著提高模型的准确性和可信度。实验结果显示,RLHF-V在多种多模态任务中表现出色,且具有高效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值