【LLAVA】Llava中在数据集制作过程中是怎么从CC3M中过滤出595K数据的?为什么这样做?

文章描述了一种方法,通过Spacy提取CC3M数据集中的名词短语,筛选出频率大于3的常见概念,减少冗余并保持多样性,最终得到约595K高质量的图像-文本对。筛选过程确保了概念的全面覆盖。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文:CC3M. We extract noun-phrases using Spacy for each caption over the whole cc3m dataset, and count the frequency of each unique noun-phrase. We skip noun-phrases whose frequency is smaller than 3, as they are usually rare combinations concept and attributes that has already been covered by other captions. We then start from the noun-phrases with lowest remaining frequency, add the captions that contain this noun-phrase to the candidate pool. If the frequency of the noun-phrase is larger than 100, we randomly choose a subset of size 100 out of all its captions. This results in around 595K image-text pairs.

上面这段话是摘自LLAVA原论文。下面说明这个处理过程。

1. 请你具体讲一下他怎么做的,并解释为什么要这么做?

这段话描述了一个从CC3M数据集(一个包含约300万图像-文本对的大型数据集)中过滤和选择图像-文本对的过程,最终获得大约595K(59.5万)的图像-文本对。这个过程主要利用了自然语言处理库Spacy来识别和处理文本中的名词短语&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值