原文:CC3M. We extract noun-phrases using Spacy for each caption over the whole cc3m dataset, and count the frequency of each unique noun-phrase. We skip noun-phrases whose frequency is smaller than 3, as they are usually rare combinations concept and attributes that has already been covered by other captions. We then start from the noun-phrases with lowest remaining frequency, add the captions that contain this noun-phrase to the candidate pool. If the frequency of the noun-phrase is larger than 100, we randomly choose a subset of size 100 out of all its captions. This results in around 595K image-text pairs.
上面这段话是摘自LLAVA原论文。下面说明这个处理过程。
1. 请你具体讲一下他怎么做的,并解释为什么要这么做?
这段话描述了一个从CC3M数据集(一个包含约300万图像-文本对的大型数据集)中过滤和选择图像-文本对的过程,最终获得大约595K(59.5万)的图像-文本对。这个过程主要利用了自然语言处理库Spacy来识别和处理文本中的名词短语&#