【图文详解】如何降低Transformer的计算复杂度:Transformer架构原理和改进自注意力机制

本文详细分析了Transformer计算复杂度,重点探讨了自注意力机制的计算过程,包括矩阵计算、注意力矩阵归一化和加权求和。针对自注意力层的高计算复杂度,提出了稀疏化和线性化两种改进策略,介绍了包括Sparse Transformer、Reformer、Linformer等在内的多种优化方法,旨在降低长序列处理时的计算成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何降低Transformer的计算复杂度

Efficient Transformers.

本文目录:

  1. Transformer的计算复杂度
  2. 改进自注意力机制

1. Transformer的计算复杂度

(1) Transformer的典型结构

典型的Transformer结构如上图所示,其整体计算量来源于模型中的自注意力层和全连接层两部分,本文主要讨论自注意力层的改进。

(2) 自注意力机制的运算

由于计算机中乘法的计算速度比加法慢,因此在衡量计算复杂度时主要考虑乘法。对于矩阵乘法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值