1. 背景介绍
1.1 大模型时代的来临
近年来,随着深度学习技术的飞速发展,大规模预训练语言模型(Large Language Models, LLMs)如 BERT、GPT-3 等,在自然语言处理领域取得了令人瞩目的成就。这些大模型拥有数十亿甚至上千亿的参数,能够从海量文本数据中学习到丰富的语言知识和语义表示,并在各种下游任务中展现出优异的性能。
1.2 微调:释放大模型潜力的关键
尽管大模型在通用语言理解方面表现出色,但它们在特定领域或任务上的表现仍有提升空间。为了将大模型的强大能力应用于特定场景,微调(Fine-tuning)技术应运而生。微调是指在预训练模型的基础上,使用特定领域或任务的数据进行进一步训练,从而使模型适应新的任务需求。
1.3 学术界的前沿探索
学术界一直致力于探索大模型微调的最佳实践和前沿技术,以提升模型在特定任务上的性能、效率和可解释性。本文将深入探讨学术界在大模型微调方面的最新研究进展,并介绍一些具有代表性的方法和应用。
2. 核心概念与联系
2.1 预训练与微调
预训练是指在大规模无标注语料库上训练模型,学习通用的语言知识和语义表